A Modern Play Color Cipher Involving Dynamic Permuted key with Iterative and Modular Arithmetic Functions

Prof. Ravindra Babu Kallam*
Department of Computer Science Engineering
Vivekananda Institute of Technology \& Science SET
Kareemnagar, A.P, India
rb_kallam@yahoo.com

Dr. S.Udaya Kumar
Principal
MVSR Engineering College,
Hyderabad, India
uksusarla@rediffmail.com

Dr.A.Vinaya Babu
Director, Admissions
Jawaharlal Nehru Technological University, Hyderabad
A.P, India
avb1222@gmail.com

Abstract

In this paper, we have developed a block cipher involving permutation, color substitution with iterative and modular arithmetic functions. For this development we have used a large symmetric key of 128 bits. By using sub key generation algorithm the 128 bit key in turn divided into four parts as K_{1}, K_{2}, K_{3} and K_{4}. Among these K_{1}, K_{2} were used as a parameters to the function, and the function is selected based on K_{3} out available 10 functions. The output of the function will be treated as a starting address and increment value for selecting the color in our previously invented " Play color cipher algorithm". K_{4} is used as a key for transposition. The process of encryption and decryption were explained with example. From the cryptanalysis carried out in this paper, we conclude that the cipher cannot be broken by any cryptanalysis attack.

Keywords: Symmetric block cipher, Cryptanalysis, Play color cipher (PCC), substitution, permutation, RSA algorithm

I. INTRODUCTION

Cryptography is a principle enabler of many secure computing systems. Using cryptographic techniques such as encryption and secure hashing, we can gratify several crucial security requirements for networks, computers, data and information against a diverse set of threats[1-4].

A number of block ciphers [5-10][12-15] have been developed in the recent past, which can be observed in the literature [11]. Feistal [8][9] has used the concept of Hill cipher and developed the Feistal cipher. However subsequently he found that his approach is vulnerable for cryptanalytic attacks.

In the current exploration, Udaya et al, have invented a modern symmetric block cipher [16-18] by using a Color substitution and permutations with 128 bit key [17]. Form their presentation it is observed that the plain text including alphanumeric characters, symbols, diagrams and image are first converted into rich text format, then to inculcate confusion the cipher was transposed twice by using 36 bit key and at the end each character was substituted with a color from the available 18 decillions of colors in the computer world[11]. Finally they have proven that the cipher they have developed is cryptographically stronger.

Since the security provided by cryptographic processing depends on the secrecy and integrity of the cryptographic keys, in this paper we have devoted our attention towards keys, involved iterative and modular arithmetic function to generate sub keys and hence to develop more stronger cipher.

II. KEY LAYOUT AND IT'S ORGANIZATION

The key layout and its organization among the participants in communication is as follows:

In this we have used a 128 bit key. By using sub key generation algorithm it is divided in to 4 sub keys for encryption and decryption purpose. Among these from the LHS the first two keys K_{1} (60 bits), K_{2} (28bits) were used as a parameters to the function selected by using K_{3} (4bits) out available 10 functions. The output of the function will give two values and they were the starting address and the increment value for color substitution and the last 36 bits in the main key is K4 used for the transposition of the cipher in the rich text format. The range of the keys and its detailed explanation is given below.
-Choose a key ' K ', should be 32 decimal numbers between ' 0 to 9 ' (having 4 sub keys), from LHS the first 15 digits in the Key can be between 000000000000001 (Min) to 999999999999999 (Max). Next 7 digits in the key can be 0000001 (Min) to 9999999 (Max), these two are the parameters passed to the iterative and modular arithmetic function selected by K_{3} out of the available 10 functions. The value of K_{3} should be between 0 to 9 . The next 9 digits in the main key will be the key K_{4} for transposition. The key should be the numbers between ' 1 to 9 ', and the number once used should not be repeated.

Figure 1. Key layout for 128 binary bits

- Encrypt K using receivers (User B) Public key (PUB) for confidentiality ----------------------- 2.1
- Encrypt the result of 2.1 using senders (User A) Private key (PRA) for Authentication.-------- 2.2
- Send the result of 2.2 to the receiver-----------2.3
- Decrypt 2.3 by using PUA ------------- 2.4
- Decrypt 2.4 by using PRB ------------- 2.5

Hence with both validation and secrecy we have dispersed the keys between User A and User B.

- Use RSA [19] Public key encryption algorithm for key distribution as shown in Figure 2:

Figure 2. Secure transmission of key using RSA algorithm

III. DEVELOPMENT OF THE CIPHER

In this we have developed the cipher in four phases, in first phase: the plain text in alphanumeric characters, diagrams, symbols and images were converted in to Rich text format; named it as C 1 , in second phase the C 1 is transposed in to C 2 by using the key K 3 , in third phase the C 2 is again permuted in to C3 by using K3 and in fourth phase the color substitution is applied on C 3 to produce C 4 , it is the final cipher and can be treated as very strong. The process of input and the output of each phase were explained in brief in beneath:

A. Brief on RTF and Converting plain text in to rich text format (RTF) :

The Rich Text Format (RTF) is a method of encoding formatted text and graphics for use within applications and for transfer between applications. Users often depend on special translation software to move word-processing documents between various applications developed by different companies. RTF serves as both a standard of data transfer between word processing software, document formatting, and a means of migrating content from one operating system to another. RTF allows documents to migrate forward and backward in time. As with the Textbox control, the text displayed is set by the Text property. The rich textbox control does everything the Text Box control does, but it can also display fonts, colors, and links; load text and embedded images from a file; and find specified characters. It has numerous properties to format text. We can convert all types of characters, numbers, symbols and diagrams by using rich text box in to Rich text format. By using this we can convert the plaintext into an unintelligible text.

In our paper, we have used it in the first phase to convert the plain text contain characters, numbers, symbols, diagrams, images e.t.c., in to an un comprehensible form as shown below; it is noticeable that the diagrams or the images
in the plain text is also got converted into numbers and symbols. We have named the output of this step as Cipher text C1.
Plain text considered for encryption:

```
AN INVENTION OF A NEW
CRYPTOGRAPHIC ALGORITHM
DEV BYRAVINDRA
1111111@@@@@@@@@@@
    ^&***(())555599999999
```


Converted Cipher text in Rich text format C1:

 Wiewk ind4\uc1 pardyfo fs 20 an INvENTION OF A NEWYpar
CRyptographic algorithmyar
DEV BY RAVINDRA par
$1111111 \operatorname{cog}$
4844 (CO) 555599999999 par
[\pict \mmetafile8\picw2091\pich995\picwgoal1185\pichg 01000900000390010000080010000000000004000000030108000 $000602 \mathrm{f} 400 \mathrm{~F} 601040000002 \mathrm{e} 0118001 \mathrm{C000000f60210000700000}$ $53797374656 \mathrm{dO000} 5601000057 \mathrm{c} 0000 \mathrm{c} 4$ e9120026e2823910b01 $0004000000020101001 c 000000 \mathrm{fb029cff0000000000009001000}$ $4 e 657720526 f 6 \mathrm{~d} 616 \mathrm{e} 00000000000000000000000000000000000$ $02000000020 \mathrm{dO000003} 20 \mathrm{a} 5400 \mathrm{fdff} 01000400 \mathrm{fdfffafff} 101$ ee 0 $0000 \mathrm{f} 02000000 \mathrm{ccff} 000000040000002 \mathrm{dO1020008000000Fa020}$ $002 \mathrm{dO103000e000000240305000c0051000c00e700d801e700d80}$ 00000000000000000000040000002 d 01040007000000 f C020000f $0008000000 \mathrm{~F} 90200000600000000000000040000002 \mathrm{dO10600070}$ 040000002 d 0107000600000024030400060051000600 e 700 d 801 e $00040000002 \mathrm{dOL1050004000000f0010600040000002701fffff040}$ 07000000 F C020000808000000000040000002d010200040000000 $00000024030300 f 700060016005400 \mathrm{~d} 8015400040000002 \mathrm{~d} 01040$ $2 d 01050008000000 \mathrm{Fa} \mathrm{a} 200000600000000000000040000002 \mathrm{~d} 010$ $00240303007700060016005400 \mathrm{~d} 8015400040000002 \mathrm{dO10400040}$ 0600040000002701 Ffff 04000000 F0010200030000001e0007000 $0000002 \mathrm{~d} 010200040000002 \mathrm{dO103000} \mathbf{0 0 0 0 0 0 0 2 4 0 3 0 5 0 0 \mathrm { ac } 0 0 4 9 0}$ ac004 $500040000002 \mathrm{dOL10400040000002d01050008000000} \mathrm{Fa020}$ $002 d 010600040000002 \mathrm{dO107000} 000000024030400 \mathrm{ac} 004 \mathrm{~F} 00 \mathrm{ac} 0$ $00002 d 010400040000002 \mathrm{dO1050004000000f0010600040000002}$ 0000000000
? ${ }^{\text {P/par }}$

B．First Transposition on the output of previous step Cipherl（C1）．

For this we have used a 36bit key，which is the sub key （K4）of the 128 bit key（ K ）．It is a 9 digits decimal number as shown in the Figure 1．The numbers in the K 4 can be between 1 to 9 ，zero is not allowed to use and the number once used should not be repeated．

For performing transposition message should be written in the rectangle，row by row，and read the message off， column by column，but permute the order of the columns． The order of the columns then becomes key to the algorithm． In the example shown，we have considered the key－K4 is ＇ 456789123 ＇used for performing transposition on the cipher C 1 ，the out put is as follows and named it as Cipher C2：

Output of the first transposition C2：
 Scro Serifans
 CRY pagraphiftolgoritc Apar
DHM By Ravev RAl par INDil1111
1008dedear
＊s包p（id＇）5＊＊＊999999555par
\｛99）ct＇wnelpiiles＇ptaf2091）picw995＇，piichoel118cwgichgo $0115690000000001000039 \mathrm{CO120000600000040000000300000005}$ 000000土400£6c02 40000001001180002e00000土1c0100007b02000

 e 6.5770
$26 \pm 6 \mathrm{~d} 620500000016 \mathrm{e} 000000000000000000000000000000000004$

 $00410103000200000000 \mathrm{e} 30500024051000 \mathrm{cc} 00700 \mathrm{dB000e00c801}$ $000 \pm 0000000000000000000000000041040002 \mathrm{dOOOOOfe700000} \mathrm{ \pm} \mathrm{ \pm}$ 0000100000モ080000006a0200000000000040000002d0100000700 $040000002 \mathrm{dO100000c} 000070240304000 c 0051000000 \mathrm{e} 70000 \mathrm{c} 1 \mathrm{e} 7$ $00041040002600000004001050 \pm 0010000040000600701 \pm \pm \pm 00200$ 07000005 E 020000008000000800040000002 dO 1000004000020060 00000：
 $20000000082000005 \approx 0000000600000040000002 \mathrm{dO100000400006}$ $0070006000500.5400016154000 \mathrm{dB000002d400400040010002d0100}$ $00000400006027015 \pm 000400000150010200010000001030070000$ $0000002 \mathrm{dO} 10000040000202 \mathrm{dO103000e0000000003050002404500}$ ac14fェロ0040004002d010000040000402d010．50008000000000200 $002000060004101000210000000000107024030000 \mathrm{acog} 4 \pm 400 c 00$

C．Ssecond Transposition on the out put of previous step （C2）

Same operation is performed on C 2 with the same key－ （K4）＇456789123＇，with this multiple transpositions，we can extend the strength of the cipher，so that it is not easily breakable

Output of the second transposition C3：

[^0]

Figure 3. Flow chart for encryption process

Figure 4. Flow chart for decryption process

IV. CRYPTANALYSIS

The cryptanalyst attacks which are commonly measured in the field of Cryptography and network security are:

Cipher text only attack (Brute force attack)
Known plaintext attack
Chosen plaintext attack
Chosen cipher text attack
In this analysis the key ' K ' consisting of 32 decimal numbers, where in each number can be represented in the form of 4 binary bits. Hence the length of the key is 128 bits and the size of the key space is
$2^{128}=3.4 \times 10^{38}$ Keys
If the time required for the determination of the plain text for one value of the key in the key space is taken as 10^{-3} seconds, then the time required for obtaining the plain text by considering all the possible keys in the key space is

$$
\frac{3.4 \times 10^{38} \times 10^{-3}}{365 \times 24 \times 60 \times 60}=1078 \times 10^{28} \text { Years }
$$

If we perform one encryption per micro second it takes 5.4×10^{24} years, and for 10^{6} encryptions per micro second it leads to 5.4×10^{18} years. This number is very large; hence, it is impossible to break the cipher.

In the case of known plain text attack, we have to know as many pairs of plaintext and cipher text as we require. The number of colors in the computer world is more then 18 decillions, with minor difference we have thousands of shades in the same color, by looking at the colors it is impossible to obtain the plain text, even if you have number of plain text and the corresponding cipher text, the plain text is not the exact plain text of the color cipher because in step one we have converted the plain text in to RTF format, considered the result as C 1 , then in the second step we have performed trans position on the C 1 and the result in this step is C2, in third step we again permuted with the same key and the result is C3 and finally we did color substitution on the C 3 and the result is C4.

Hence, the plain text for final cipher C4 is another cipher C3, but not the exact plain text. With this permutations and substitutions in different stages we can conclude that knowing plain text does not work.

In the last two cases of the cryptanalysis attack, no scope is found for breaking the cipher. In view of the above discussion, we conclude that the Cipher is a very strong.

V. EXPERIMENTAL RESULTS

The invented play color cipher algorithm works with 128 bit key and it is proven that it is comfortably converting all kinds of text, symbols, diagrams and images.

The process of conversion with example was explained in section - III. The strength of the any algorithm depends on key rather then the algorithm, in this the length of the key is 32 decimal digits and proven that it is far from crypt analysis attacks.

In this paper especially we have used dynamic permuted key with iterative and modular arithmetic functions to set hurdles in the algorithm and hence to strengthen the cipher.

The execution of encryption and decryption of the 'play color cipher algorithm' with example is shown below

Figure 5. Encryption using PCC with 128 bit key

VI. CONCLUSION

In this paper we have presented a symetric encryption scheme using color substitution and permutations involving dynamic permuted key with iterative and modular arithmetic functions. We have proven that it can encrypt / decrypt all kinds of text, numbers, symbols, images and diagrams with example. For sending the key from source to destination we have used RSA algorithm and the procedure was explained with neat diagram. The brief explanation and the advantages of RTF were given; Generation of cipher text in four stages was explained with example. With the 128 bit key the cipher is very strong and far from cryptanalyst attacks. For performing 10^{6} encryptions per micro second it takes 5.4×10^{18} years. Finally we conclude that the algorithm is potential one.

VII. ACKNOWLEDGMENT

The first author likes to thank Dr. S. Udaya Kumar and Dr. A.Vinaya Babu for their precious suggestions and supervision all along to complete the task successfully. He also likes to thank his parents and family members for their overwhelming support. Special thanks to IJARCS for allowing us to use its template.

VIII. REFERENCES

[1] Sastry V.U.K, S. Udaya Kumar and A. Vinaya babu, 2006, A large block cipher using modular arithmetic inverse of a key matrix and mixing of the key matrix and the plain text. J.Comput. Sci., 2: 698-703.
[2] S. Udaya Kumar, A.Vinaya Babu, 2006, A Large block cipher using an iterative method and the modular arithmetic inverse of a key matrix. IAENG Int. J. Comput. Sci., 32: 395-401.
[3] S. Udaya kumar, Sastry and A.Vinaya Babu, 2007. A block cipher involving interlacing and decomposition. Inform. Technol. J., 6: 396-404
[4] V.U.K.Sastry, Aruna, S.Udaya Kumar, A Modern Hill Cipher Involving a Permuted key and Modular arithmetic Addition Operation, IJARCS, Vol 2, No 1, Jan-Feb 2011.
[5] Adams, C.M., 1997. The CAST-128 encryption algorithm. RFC 2144, May 1997.
[6] Daemen J and V.Rijmen, 2001. Rijndel, the advanced encryption standard (AES). Dr. Dobb's J., 26: 137-139.
[7] Daemen J, S. Borg and V. Rijmen, 2002. The Design of Rijndael: AES-the Advanced Encryption Standard. Springer- Verlag, ISBN 3-540-42580-2.
[8] Feistel, H. 1973, Cryptography and Computer privacy. Sci. Am., 288: 15-23.
[9] Feistel, H., W. Notz and Smith, 1975. Some Cryptographic techniques for machine to machine data
communications. Proceedings of the IEEE, 63: 15451554
[10] Rivest, R.L., 1995. The RC5 encryption algorithm. Dr. Dobbs J., 20: 146-148.
[11] Ravindra Babu K, Dr.S. Udaya Kumar, A Survey on Cryptography and Steganography Methods for Information Security, IJCA, Vol-12, No-2, Nov 2010
[12] Ravindra Babu K, Dr. Udaya kumar, An Improved Playfair Cipher Cryptographic Substitution Algorithm, IJARCS, Volume 2, No-1, Jan-Feb 2011.
[13] Ravindra Babu K, Dr. S.Udaya Kumar, Dr.A.Vinaya Babu, An enhanced and efficient cryptographic substitution method for information security, IJNS, (in press)
[14] Ravindra Babu K, Dr.S. Udaya Kumar, Dr.A.Vinaya Babu, An Extension to traditional Playfair Cipher Cryptographic Substitution Method, IJCA, Volume 17, No-5, March 2011.
[15] Ravindra Babu K, Dr.S. Udaya Kumar, Dr.A.Vinaya Babu, An Enhanced Poly alphabetic Cipher using Extended Vigenere Table, IJARCS, Volume 2, No.2, Mar-April 2011.
[16] Prof. Ravindra Babu Kallam, Dr. S.Udaya Kumar, A Block Cipher generation using Color Substitution, IJCA, 2010 Vol 1, No-28.
[17] Ravindra Babu K, Dr.S. Udaya Kumar, Dr.A.Vinaya Babu, A More secure block cipher generation involving multiple transpositions and substitution with a large key, IJARCS, Vol 2, No 2, Mar-April 2011.
[18] Ravindra Babu K, Dr.S. Udaya Kumar, Dr.A.Vinaya Babu, A New frame work for scalable secure block cipher generation using color substitution and permutation on characters, numbers, images and diagrams, IJCA, Volume 20-no.5, April 2011.
[19] William Stallings, Cryptography and Network Security, Principles and practice, $5^{\text {th }}$ edition, 2008.

[^0]:

 ） $5 \times 12 \square 734560892$
 parDaiplrdyltrpar fa32 ．Uhe qkieTnbrowf
 17
 $001900900300003000000 e 0001 c 00070000000400000013005800000000006$ С000128400c000040000048e01110020000060キe0210000700000000000e0
 $000 c 0060001902001500000 c 0000009000000000010440051206696 \mathrm{d3} 57456$ $6 \mathrm{E} 0000 \mathrm{O} 0000000000000000000000000000040000002 \mathrm{dO101000400000000}$ 0200000
 020d000005320a07001fff0000ff00ffdff44fbe0081f2200b0d0103000100

 $0000000000000000000004000200000104400 \mathrm{do000002d00020008019000} \mathrm{ \pm} \mathrm{C}$ 0000000000040000102d000500070000001ع020000f000000000000400000［ 03
 －4044300000000007a31b3147a00b30004000404c00020010000040004102c $0005 \pm 004000000 \pm 701 \pm 0 \pm \mathrm{f} 200000 \mathrm{dO24010000030000000000a}$
 ） p
 $.0423\}$

