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Abstract: Cloud storage is a storage of data online in cloud 

which is accessible from multiple and connected resources. 

Cloud storage can provide good accessibility and reliability, 

strong protection, disaster recovery, and lowest cost cloud 

storage having important functionality i.e. securely, 

efficiently, flexibly sharing data with others new public key 

encryption which is called as Key-aggregate cryptosystem 

(KAC). Key-aggregate cryptosystem produce constant size 

ciphertexts such that efficient delegation of decryption rights 

for any set of ciphertext are possible. Any set of secret keys 

can be aggregated and make them as single key, which 

encompasses power of all the keys being aggregated. In 

other words, the secret key holder can release a constant-size 

aggregate key for flexible choices of ciphertext set in cloud 

storage, but the other encrypted files outside the set remain 

confidential. This compact aggregate key can be 

conveniently sent to others or be stored in a smart card with 

very limited secure storage. We provide formal security 

analysis of our schemes in the standard model. We also 

describe other application of our schemes.  The difference is 

one can collect a set of secret keys and make them as small 

size as a single key with holding the same ability of all the 

keys that are formed in a group. This compact aggregate key 

can be efficiently sent to others or to be stored in a smart 

card with little secure storage. 

 

Keywords: Random Oracles (RO), Transformation Key 

(TK), Key-Aggregate Cryptosystem (KAC). 

I. INTRODUCTION 

     The challenging problem is how to effectively share 

encrypted data. Of course users can download the encrypted 

data from the storage, decrypt them, then send them to others 

for sharing, but it loses the value of cloud storage. Users 

should be able to delegate the access rights of the sharing 

data to others so that they can access these data from the 

server directly. However, finding an efficient and secure way 

to share partial data in cloud storage is not trivial. Encryption 

keys also come with two flavors, symmetric key or 

asymmetric (public) key. Using symmetric encryption, when 

Alice wants the data to be originated from a third party, she 

has to give the encrypt or her secret key; obviously, this is 

not always desirable. By contrast, the encryption key and 

decryption key are different in public key encryption. The 

use of public-key encryption gives more flexibility for our 

applications. For example, in enterprise settings, every 

employee can upload encrypted data on the cloud storage 

server without the knowledge of the company’s master-

secret key.  

 

A. Problem Definition  
    In modern cryptography, a fundamental problem we often 

study is about leveraging the secrecy of a small piece of 

knowledge into the ability to perform cryptographic 

functions (e.g., encryption, authentication) multiple times. In 

this paper, we study how to make a decryption key more 

powerful in the sense that it allows decryption of multiple 

cipher texts, without increasing its size. Specifically, our 

problem statement is “To design an efficient public-key 

encryption scheme which supports flexible delegation in the 

sense that any subset of the cipher texts (produced by the 

encryption scheme) is decrypt able by a constant-size 

decryption key (generated by the owner of the master-secret 

key).” We solve this problem by introducing a special type 

of public-key encryption which we call key-aggregate 

cryptosystem (KAC). The key owner holds a master-secret 

called master-secret key, which can be used to extract secret 

keys for different classes. More importantly, the extracted 

key have can be an aggregate key which is as compact as a 

secret key for a single class, but aggregates the power of 

many such keys, i.e., the decryption power for any subset of 

ciphertext classes. With our solution, Alice can simply send 

Bob a single aggregate key via a secure e-mail. Bob can 

download the encrypted photos from Alice’s Drop box space 

and then use this aggregate key to decrypt these encrypted 

photos. The sizes of ciphertext, public-key, and master-secret 

key and aggregate key in our KAC schemes are all of 

constant size. The public system parameter has size linear in 

the number of ciphertext classes, but only a small part of it is 

needed each time and it can be fetched on demand from 

large (but non confidential) cloud storage. Previous results 

may achieve a similar property featuring a constant-size 

decryption key, but the classes need to conform to some 

predefined hierarchical relationship. Our work is flexible in 

the sense that this constraint is eliminated, that is, no special 

relation is required between the classes.  

 

II. EXISTING AND PROPOSED SYSTEMS 

A. Existing System 

    There exist several expressive ABE schemes where the 

decryption algorithm only requires a constant number of 

pairing computations. Recently, Green et al. proposed a 
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remedy to this problem by introducing the notion of ABE 

with outsourced decryption, which largely eliminates the 

decryption overhead for users. Based on the existing ABE 

schemes, Green et al. also presented concrete ABE schemes 

with outsourced decryption. In these existing schemes, a user 

provides an untrusted server, say a proxy operated by a cloud 

service provider, with a transformation key TK that allows 

the latter to translate any ABE ciphertext CT satisfied by that 

user’s attributes or access policy into a simple ciphertext 

CT’, and it only incurs a small overhead for the user to 

recover the plaintext from the transformed ciphertext CT’. 

The security property of the ABE scheme with outsourced 

decryption guarantees that an adversary (including the 

malicious cloud server) be not able to learn anything about 

the encrypted message; however, the scheme provides no 

guarantee on the correctness of the transformation done by 

the cloud server. In the cloud computing setting, cloud 

service providers may have strong financial incentives to 

return incorrect answers, if such answers require less work 

and are unlikely to be detected by users.  

 

B. Proposed System 

   We considered the verifiability of the cloud’s 

transformation and provided a method to check the 

correctness of the transformation. However, the we did not 

formally define verifiability. But it is not feasible to 

construct ABE schemes with verifiable outsourced 

decryption following the model defined in the existing. 

Moreover, the method proposed in existing relies on random 

oracles (RO). Unfortunately, the RO model is heuristic, and 

a proof of security in the RO model does not directly imply 

anything about the security of an ABE scheme in the real 

world. It is well known that there exist cryptographic 

schemes which are secure in the RO model but are inherently 

insecure when the RO is instantiated with any real hash 

function. In this thesis work, firstly modify the original 

model of ABE with outsourced decryption in the existing to 

allow for verifiability of the transformations. After 

describing the formal definition of verifiability, we propose a 

new ABE model and based on this new model construct a 

concrete ABE scheme with verifiable outsourced decryption. 

Our scheme does not rely on random oracles. In this paper 

we only focus on CP-ABE with verifiable outsourced 

decryption. The same approach applies to KP-ABE with 

verifiable outsourced decryption. To assess the performance 

of our ABE scheme with verifiable outsourced decryption, 

we implement the CP-ABE scheme with verifiable 

outsourced decryption and conduct experiments on both an 

ARM-based mobile device and an Intel-core personal 

computer to model a mobile user and a proxy, respectively.  

 

III. CONTEXT DIAGRAM OF PROJECT 

     It is obvious that we are not proposing an algorithm to 

compress the decryption key. On one hand, cryptographic 

keys come from a high entropy source and are hardly 

compressible as shown in Fig.1. On the other hand, 

decryption keys for all possible combinations of ciphertext 

classes are all in constant size information theoretically 

speaking such compression scheme cannot exist. A key-

aggregate encryption scheme consists of five polynomial-

time algorithms as follows. The data owner establishes the 

public system parameter via Setup and generates a 

public/master-secret3 key pair via Key Gen. Messages can 

be encrypted via Encrypt by anyone who also decides what 

ciphertext class is associated with the plaintext message to 

be encrypted. The data owner can use the master-secret to 

generate an aggregate decryption key for a set of ciphertext 

classes via Extract.  

 
Fig.1. Context Diagram of key aggregation. 

 

       The generated keys can be passed to delegates securely 

(via secure e-mails or secure devices) finally; any user with 

an aggregate key can decrypt any ciphertext provided that 

the cipher text’s class is contained in the aggregate key via 

decrypt. We call this as master-secret key to avoid confusion 

with the delegated key we will explain later. For simplicity, 

we omit the inclusion of a decryption algorithm for the 

original data owner using the master-secret key. In our 

specific constructions, we will show how the knowledge of 

the master-secret key allows a faster decryption than using 

Extract followed by Decrypt.  

 

A. Algorithm and Modules 

1. Secured Hashing Algorithm  
      There are several similarities in the evolution of hash 

function and that of symmetric block ciphers. We have seen 

that the increasing power of brute-force attacks and advances 

in cryptanalysis have led to the decline in the popularity of 

DES and in the design of newer algorithm with longer key 

lengths and with features designed to resist specific 

cryptanalytic attacks as shown in Fig.2. Similarly, advances 

in computing power and hash function cryptanalysis have led 

to the decline in the popularity of first MD4 and then MD5, 

two very popular hash functions. In response, newer hash 

algorithm have been developed with longer hash code length 

and with features designed to resist specific cryptanalytic 

attacks. Another point of similarity is the reluctance to depart 

from a proven structure. DES is based on the Feistel cipher, 

which in turn is based on the Substitution-permutation 

network proposal of Shannon. Many important subsequent 

block ciphers follow the feistel design because the design 

can be adapted to resist newly discovered cryptanalytic 

threats. If, instead, an entirely new design were used for a 

symmetric block cipher, there would be concern that the 
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structure itself opened up new avenues of attack not yet 

thought of. Similarly, most important modern hash functions 

follow the basic structure. This has proved to be a 

fundamentally sound structure and newer designs simply 

refine the structure and add to the hash code length. MD5, 

SHA-1, and RIPEMD-160. We then look at an internet-

standard message authentication code. A hash function H is a 

transformation that takes a variable-size input m and returns 

a fixed-size string, which is called the hash value h (that is, h 

= H(m)). Hash functions with just this property have a 

variety of general computational uses, but when employed in 

cryptography the hash functions are usually chosen to have 

some additional properties.  

 

B. Modules  

1. Setup Phase  

2. Encrypt Phase  

3. Key Gen Phase,  

4. Decrypt Phase  

 

Setup Phase: The setup algorithm takes no input other than 

the implicit security parameter. It outputs the public 

parameters PK and a master key MK.  

Encrypt Phase: Encrypt (PK, M, A). The encryption 

algorithm takes as input the public parameters PK, a message 

M, and an access structure A over the universe of attributes. 

The algorithm will encrypt M and produce a ciphertext CT 

such that only a user that possesses a set of attributes that 

satisfies the access structure will be able to decrypt the 

message. We will assume that the ciphertext implicitly 

contains A.  

 
Fig.2. System architecture 

Key Gen Phase: Key Generation (MK,S). The key 

generation algorithm takes as input the master key MK and a 

set of attributes S that describe the key. It outputs a private 

key SK.  

 

Decrypt Phase: Decrypt (PK, CT, SK). The decryption 

algorithm takes as input the public parameters PK, a 

ciphertext CT, which contains an access policy A, and a 

private key SK, which is a private key for a set S of 

attributes. If the set S of attributes satisfies the access 

structure A then the algorithm will decrypt the ciphertext and 

return a message M. 

 

IV. PERFORMANCE ANALYSIS 

A. Compression Factors 

     For a concrete comparison, we investigate the space 

requirements of the tree-based key assignment approach we 

described. This is used in the Complete Sub tree scheme, 

which is a representative solution to the broadcast encryption 

problem following the well-knownSubset-Cover framework. 

It employs a static logical key hierarchy, which is 

materialized with a full binary key tree of height h and thus 

can support up to 2
h
 ciphertext classes, a selected part of 

which is intended for an authorized delegatee. In an ideal 

case as depicted in, the delegatee can be granted the access 

to 2
hs

 classes with the possession of only one key, where hs is 

the height of a certain sub tree (e.g., hs = 2). On the other 

hand, to decrypt ciphertexts of a set of classes, sometimes 

the delegatee may have to hold a large number of keys, as 

depicted. Therefore, we are interested in na, the number of 

symmetric-keys to be assigned in this hierarchical key 

approach, in an average sense. We assume that there are 

exactly 2
h
 ciphertext classes, and the delegatee of concern is 

entitled to a portion r of them. That is, r is the delegation 

ratio, the ratio of the delegated ciphertext classes to the total 

classes. Obviously, if r = 0, na should also be 0, which means 

no access to any of the classes; if r = 100%, na should be as 

low as 1, which means that the possession of only the root 

key in the hierarchy can grant the access to all the 2
h
 classes.  

        Consequently, one may expect that na may first increase 

with r, and may decrease later. We set r = 10%, 20%,…, 

90%, and choose the portion in a random manner to model 

an arbitrary “delegation pattern” for different delegatees. For 

each combination of r and h, we randomly generate 104 

different combinations of classes to be delegated, and the 

output key set size na is the average over random 

delegations. We tabulate the results in Table 1, where h = 16, 

18, 20 respectively6. For a given h, na increases with the 

delegation ratio r until r reaches ~ 70%. An amazing fact is 

that, the ratio of na to N (= 2
h+1 

-1), the total number of keys 

in the hierarchy (e.g., N = 15), appears to be only determined 

by r but irrelevant of h. This is because when the number of 

ciphertext classes (2
h
) is large and the delegation ratio (r) is 

fixed, this kind of random delegation achieves roughly the 

same key assignment ratios (na=N). Thus, for the same r, na 

grows exponentially with h. We can easily estimate how 

many keys we need to assign when we are given r and h. 

TABLE 1. Compression ratios for different delegation 

ratios and tree heights 
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    We then turn our focus to the compression factor F for a 

certain h, i.e., the average number of delegated classes that 

each granted key can decrypt. Specifically, it is the ratio of 

the total number of delegated classes (r2
h
) to the number of 

granted keys required (na). Certainly, higher compression 

factor is preferable because it means each granted key can 

decrypt more ciphertexts. Fig.3 (a) illustrates the relationship 

between the compression factor and the delegation ratio. 

Somewhat surprisingly, we found that F = 3.2 even for 

delegation ratio of r = 0.9, and F < 6 for r = 0.95, which 

deviates from the intuition that only a small number of 

“powerful” keys are needed for delegating most of the 

classes. We can only get a high (but still small) compression 

factor when the delegation ratio is close to 1. A comparison 

of the number of granted keys between three methods is 

depicted in Fig. 3(b). We can see that if we grant the key one 

by one, the number of granted keys would be equal to the 

number of the delegated ciphertext classes. With the tree-

based structure, we can save a number of granted keys 

according to the delegation ratio. On the contrary, in our 

proposed approach, the delegation of decryption can be 

efficiently implemented with the aggregate key, which is 

only of fixed size. In our experiment, the delegation is 

randomly chosen. It models the situation that the needs for 

delegating to different users may not be predictable as time 

goes by, even after a careful initial planning. This gives 

empirical evidences to support our thesis that hierarchical 

key assignment does not save much in all cases. 

B. Performance of Our Proposed Schemes 

     Our approaches allow the compression factor F (F =n in 

our schemes) to be a tunable parameter, at the cost of O (n)-

sized system parameter. Encryption can be done in constant 

time, while decryption can be done in O(|S|) group 

multiplications (or point addition on elliptic curves) with 2 

pairing operations, where S is the set of ciphertext classes 

decrypt able by the granted aggregate key and |S| ≤ n. As 

expected, key extraction requires O (|S|) group 

multiplications as well, which seems unavoidable. However, 

as demonstrated by the experiment results, we do not need to 

set a very high n to have better compression than the tree-

based approach. Note that group multiplication is a very fast 

operation. Again, we confirm empirically that our analysis is 

true. We implemented the basic KAC system in C with the 

Pairing-Based Cryptography (PBC) Library version 0.4.18 

for the underlying elliptic-curve group and pairing 

operations.  

 

TABLE 2.Performance of our basic construction for h = 

16 with respect to different delegation ratio r (in 

milliseconds)

 

    Since the granted key can be as small as one G element, 

and the ciphertext only contains two G and one GT elements, 

we used (symmetric) pairings over Type-A (super singular) 

curves as defined in the PBC library which offers the highest 

efficiency among all types of curves, even though Type-A 

curves do not provide the shortest representation for group 

elements. 

 
Fig.3. (a) Compression achieved by the tree-based 

approach for delegating different ratio of the classes (b) 

Number of granted keys (na) required for different 

approaches in the case of 65536 classes of data 

      In our implementation, p is a 160-bit Solinas prime, 

which offers 1024-bit of discrete-logarithm security. With 

this Type-A curves setting in PBC, elements of groups G and 

GT take 512 and 1024 bits to represent, respectively. The test 

machine is a Sun Ultra Sparc IIIi system with dual CPU 

(1002 MHz) running Solaris, each with 2GB RAM. The 

timings reported below are averaged over 100 randomized 

runs. In our experiment, we take the number of ciphertext 

classes n = 216 = 65536. The Setup algorithm, while 

outputting (2n + 1) elements by doing (2n - 2) 

exponentiations, can be made efficient by preprocessing 

function offered by PBC, which saves time for 

exponentiating the same element (g) in the long run. This is 

the only “low-level” optimization trick we have used. All 

other operations are implemented in a straightforward 

manner. In particular, we did not exploit the fact that ^e(g1, 

gn) will be exponentiated many times across different 

encryptions. However, we pre-computed its value in the 

setup stage, such that the encryption can be done without 

computing any pairing. Our experiment results are shown in 

Table 2. The execution times of Setup, Key Gen, and 

Encrypt are independent of the delegation ratio r.  
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    In our experiments, Key Gen takes 3.3 milliseconds and 

Encrypt takes 6.8 milliseconds. As expected, the running 

time complexities of Extract and Decrypt increase linearly 

with the delegation ratio r (which determines the size of the 

delegated set S). Our timing results also conform to what can 

be seen from the equation in Extract and Decrypt two pairing 

operations take negligible time, the running time of Decrypt 

is roughly a double of Extract. Note that our experiments 

dealt with up to 65536 number of classes (which is also the 

compression factor), and should be large enough for fine-

grained data sharing in most situations. Finally, we remark 

that for applications where the number of ciphertext classes 

is large but the non confidential storage is limited, one 

should deploy our schemes using the Type-D pairing 

bundled with the PBC, which only requires 170-bit to 

represent an element in G. For n = 2
16

, the system parameter 

requires approximately 2.6 megabytes, which is as large as a 

lower quality MP3 file or a higher-resolution JPEG file that 

a typical cell phone can store more than a dozen of them. But 

we saved expensive secure storage without the hassle of 

managing a hierarchy of delegation classes. 

V. CONCLUSION 

    How to protect users’ data privacy is a central question of 

cloud storage. With more mathematical tools, cryptographic 

schemes are getting more versatile and often involve 

multiple keys for a single application. In this article, we 

consider how to “compress” secret keys in public-key 

cryptosystems which support delegation of secret keys for 

different ciphertext classes in cloud storage. No matter 

which one among the power set of classes, the delegate can 

always get an aggregate key of constant size. Our approach 

is more flexible than hierarchical key assignment which can 

only save spaces if all key-holders share a similar set of 

privileges.  

 

Future Enhancement: In Future it can be upgraded with 

verifiable and recoverable. The ABE with verifiable provides 

us to verify the data whether it is modified or not. In future it 

can be upgraded by using Hash Chains such that we can 

identify the exact modified block and recover the remaining 

part of the data. 
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