
International Journal of Advanced Engineering Research and Technology (IJAERT)

Volume 5 Issue 11, November 2017, ISSN No.: 2348 – 8190

854

www.ijaert.org

Selenium: An Automated Testing Tool For Web Applications and its

Locating Strategies

P.Shravani
1
, K.Sreeveda

2

1
(Assistant Professor, CSE Dept, Kamala Institute of Technology & Science, Singapuram

Email: shravanipulluri123@gmail.com)
2
(Assistant Professor, CSE Dept, Kamala Institute of Technology & Science, Singapuram

 Email: sreeveda.karrepu@gmail.com)

ABSTRACT

Software testing is the most important process to find

bugs and improves the quality of the software product.

Software testing also helps to identify errors, gaps or

missing requirements in contrary to the actual

requirements. It can be either done manually or using

automated tools. Testing is a very expensive process.

Manual testing involves a lot of efforts, time and cost

and these efforts can be reduced by using the automated

testing with specific tools. At present majority of the

applications are based on web and that are executed in a

web browser and these web applications are more

complex to test manually. Manual testing process can’t
provide accurate results and this can be avoided by using

automation testing process. The main objective of this

paper is to make automation testing process for web

based applications using software testing tool Selenium.

Selenium is a open source automated testing suite for

web applications across different browsers and

platforms.

Keywords: Automated Testing, Selenium Grid, Selenium

IDE, Selenium RC, Software Testing, Selenium Web

Driver.

I. INTRODUCTION

Software testing is a process to identify all bugs that are

exist in a software product. Software testing is an

activity to check whether the actual results match the

expected results and to ensure that the software system is

defect free. Software testing is also performed to achieve

quality by using the software with applicable test cases.

Testing can be integrated at various points in the

development process depending upon the tools and

methodologies used. Software Testing process can be

performed by two ways that are manual testing or

automation testing.

Fig 1: Software Testing

1.1 Manual Testing:

Manual testing is the oldest and most rigorous type of

software testing. Manual testing is a process to test the

software manually to find out the bugs it requires a tester

to perform manual test operations on the test software

without the help of Test automation[1]. Any new

application must be manually tested before its testing

can be automated. Manual testing requires more effort,

but is necessary to check automation feasibility. Manual

Testing does not require knowledge of any testing tool.

One of the Software Testing Fundamental is "100%

Automation is not possible". Manual testing is not

suitable for large projects as it requires more resources

and time. Manual testing is performed by a human

sitting in front of a computer carefully executing the test

cases.

1.2 Automated Testing:

Automated testing is a method in software testing that

makes use of special software tools to control the

execution of tests , compares actual test results with

expected results and generates detailed test reports . All

of this is done automatically with little or no intervention

from the test engineer. Automation testing [3]saves time,

money by making testing more efficient and it also

improves testing accuracy compared to testing directed

by human. Using automated testing tool[1] it is possible

http://www.ijsret.org/

International Journal of Advanced Engineering Research and Technology (IJAERT)

Volume 5 Issue 11, November 2017, ISSN No.: 2348 – 8190

855

www.ijaert.org

to record the test suite and re-play it as when we

require. Once the test suite is automated, no human

intervention is required. The automation software testing

process consists of a sequence of activities and tools that

are processed in order to execute the test on software

and to keep the record of the result of tests. A general

testing process is depicted in figure 2.

The following activities are include in testing process:

 Test Tool Selection

 Define Scope of Automation

 Test Planning

 Test Analysis

 Test Design & Implementation

 Test Execution

 Test Evaluation

1.2.1 Test tool selection:

Test Tool selection[4] largely depends on the technology

the Application Under Test is built on. The following

factors are important during tool selection:

 Assessment of the organization’s maturity (e.g.

readiness for change).

 Identification of the areas within the organization

where tool support will help to improve testing

processes.

 Evaluation of tools against clear requirements and

objective criteria.

 Proof-of-concept to see whether the product works

as desired and meets the requirements and objectives

defined for it.

 Evaluation of the vendor (training, support and other

commercial aspects) or open-source network of

support.

 Identifying and planning internal implementation.

1.2.2 Scope of Automation:

Scope of automation is the area of our application under

test which will be automated. Following points help

determine scope:

 Scenarios which have large amount of data.

 Common functionalities across applications.

 Technical feasibility.

 Complexity of test cases.

 Ability to use the same test cases for cross browser

testing.

Fig 2: Testing Process

1.2.3 Test Planning:

Test planning has following major tasks:

 To determine the scope and risks and

 identify the objectives of testing.

 To determine the test approach.

 To implement the test policy and/or the test strategy.

 To determine the required test resources like

 People, test environments, PCs, etc.

1.2.4 Test Analysis and Test Design:

Test analysis and Test Design has the following major

tasks:

 To review the test basis.

 To design the tests.

 To evaluate testability of the requirements and

system.

 To design the test environment set-up and identify and

required infrastructure and tools.

 To identify test conditions.

1.2.5 Test Implementation:

Test implementation has the following major task:

http://www.ijsret.org/
http://istqbexamcertification.com/what-is-the-purpose-and-importance-of-test-plans/
http://istqbexamcertification.com/what-are-the-test-approaches-or-strategies-in-software-testing/

International Journal of Advanced Engineering Research and Technology (IJAERT)

Volume 5 Issue 11, November 2017, ISSN No.: 2348 – 8190

856

www.ijaert.org

 To develop and prioritize our testcases by using

techniques and create test data for those tests.

 To create test suites from the test cases for efficient

test execution.

 To implement and verify the environment.

 During this phase we can create Automation

 strategy & plan, which contains following

 details:

 Automation tools selected

 Framework design and its features

 In-Scope and Out-of-scope items of automation

 Schedule and Timeline of scripting and execution

 Deliverables of automation testing

1.2.6 Test Execution:

Automation Scripts are executed during this phase.

Execution can be performed using the automation tool

directly or through the Test Management tool which will

invoke the automation tool. Test execution has the

following major task:

 To execute test suites and individual test cases

following the test procedures.

 To re-execute the tests that previously failed in order

to confirm a fix. This is known as confirmation testing

or re-testing.

 To log the outcome of the test execution and record

the identities and versions of the software under tests.

The test log is used for the audit trial.

 To Compare actual results with expected

 results.

1.2.6 Test Evaluation:

Test Evaluation is the process by which a system or

components are compared against requirements and

specifications through testing. During evaluation we

must check the results and evaluate the software under

test and the completion criteria, which helps us to decide

whether we have finished testing and whether the

software product has passed the tests.

2. AUTOMATION TESTING

 TOOL: SELENIUM

Selenium is a software testing tool [2] used for

regression testing. It is an open source testing tool that

provides playback and recording facility for regression

testing. The Selenium IDE only supports Mozilla

Firebox web browser.

Fig 3 : Selenium Suite

 It provides the provision to export recorded script in

other languages like Java, Ruby, RSpec, Python, C#,

JUnit and TestNG.

 It can execute multiple tests at a time.

 Auto complete for Selenium commands that

are common Walkthrough tests.

 Identifies the element using id, name, X-path, etc.

 Store tests as Ruby Script, HTML, and any other

format.

 It provides an option to assert the title for

 every page

 It supports selenium user-extensions.js file.

 It allows to insert comments in the middle of the

script for better understanding and debugging

2.1 Selenium IDE:

Selenium IDE (Integrated Development Environment) is

a tool to develop Selenium test cases. Selenium IDE was

originally created by Shinya Kasatani and donated to

Selenium project in 2006. It is implemented as a Firefox

Plug-in that allows recording, editing and debugging the

selenium test cases. Selenium name comes from

Selenium Recorder. On start-up of the Firefox, the

recording option is automatically turned on. This option

allows user to record any action done inside the web

page. In Selenium IDE [5]scripts are recorded in

Selenese, a special test scripting language which is a set

of Selenium commands. It is used to test web

application. Actions, Accessors, Assertions are the

classification of selenium.

2.1.1 Features:

 It is simple and easy record and playback.

 Selenium IDE supports intellectual field selection

options like ID’s, XPath and Names.

 It saves test scripts in several formats like Selenese,

Ruby etc.

 IDE allow to customization through plugins.

 Selenium IDE having an option for adding different

asserts options in scripts.

 It allows setting breakpoints and debugging the scripts.

http://www.ijsret.org/

International Journal of Advanced Engineering Research and Technology (IJAERT)

Volume 5 Issue 11, November 2017, ISSN No.: 2348 – 8190

857

www.ijaert.org

 It also supports auto complete commands.

Fig 4: Architecture of IDE

2.1.2 Limitations:

 Selenium IDE works only in Mozilla Firefox and it

cannot be used with other browsers.

 There is no option to verify images.

 It can execute scripts created in selenese only.

 It is difficult for checking complex test cases

involving dynamic contents.

2.2 Selenium RC:

To overcome the Selenium IDE limitations,

ThoghtWork’s engineer Paul Hammant decided to create

a server that will act as HTTP proxy to “trick” the

browser into believing that Selenium Core and the web

application being tested come from the same domain.

This system known as Selenium Remote Control[7]. It is

possible to run tests inside every JavaScript compatible

browser using a wide range of programming language.

Selenium RC has two components

Selenium RC has two parts:

Selenium Server: It uses Selenium core and browser’s

built-in JavaScript interpreter to process selenese

commands (such as click, type) and report back results.

Selenium Client Libraries: Client libraries are the API’s

for the programming languages to communicate with

Selenium server.

Selenium RC components are:

 The Selenium Server which launches and kills

browsers, interprets and runs the Selenese commands

passed from the test program, and acts as an HTTP

proxy, intercepting and verifying HTTP messages

passed between the browser and the AUT(Application

Under Test).

 Client libraries which provide the interface between

each programming language and the Selenium RC

Server.

2.2.1 Architecture of RC:

Fig 5: Architecture of RC

2.2.2 Features:

 It faster execution speed than IDE.

 Cross browser and cross platform.

 Have matured and complete API.

 It can readily support new browsers.

 Selenium can run tests automatically

 as many times as we want.

 Selenium can support data driven testing.

 It allows the user to use programming

 language.

2.2.3 Limitations:

 Selenium RC is slow.

 It has limited features of drag and drop of

 Objects.

 It struggles when running concurrent tests.

 It does not allow simultaneously tests across different

OS and browsers.

2.3 Selenium Web Driver:

Simon Stewart created Web Driver 2006 when browsers

and web applications were becoming more powerful and

more restrictive with JavaScript programs like Selenium

Core. It was the first cross platform testing framework

that could control the browser. To provide a simpler,

http://www.ijsret.org/

International Journal of Advanced Engineering Research and Technology (IJAERT)

Volume 5 Issue 11, November 2017, ISSN No.: 2348 – 8190

858

www.ijaert.org

more concise programming interface. It supports

dynamic web pages where elements of a page may

change without the page itself being reloaded. Web

Driver is the name of the key interface against which

tests should be written in Java. Selenium Web Driver[6]

is the successor to Selenium RC. It does not need a

special server to execute tests. It directly starts a browser

instance and controls it. Selenium Grid can be used with

Web Driver to execute tests on remote systems.

Fig 6: Architecture of Web Driver

Selenium Web Driver makes directly calls to the

browser using each browser’s native support for

automation. There are so many browsers and many

programming languages there is need for common

specification provided by Web Driver API. Remote Web

driver means each browser has to implement this API.

Language bindings will send the commands to the

common driver API, on the other end there is going to be

a driver listening to those commands and they will be

executed in browser using remote Web Driver and it’s

going to return the result/response via API to the

code/Binding. Web Driver API that communicates with

the use a common wire protocol which is named as

JSON Wired Protocol which is a RESTFUL web service

using JSON over HTTP.

2.3.1 Features:

 It allows us to execute the tests against different

browsers.

 Use a programming language of our own choice for

creating test scripts

 This architecture is simpler than Selenium

 RC's architecture.

 It directly run with the browser by using the

 browser's own engine to control it.

 Support the headless Html Unit browser.

2.3.2 Limitations:

 Selenium Web Driver cannot support new

 browsers because it operates on the OS level

 and also different browsers communicate

 differently with the Operating System.

 Built-in commands are not available.

2.4 Selenium GRID:

A test of different machines against different browsers in

parallel can be run by using Selenium Grid. It runs on

multiple tests at the same time against different

machines running different browsers and operating

systems. Selenium Grid support distributed test

execution. It is a server that allows tests to use web

browser instances running on remote machines. One

server acts as the Hub. Tests contact the hub to obtain

access to browser instances. The hub offers list of

servers that provide access to browser instances, and

let’s tests use of these instances. The tests will run

parallel on multiple machines, and to manage different

browser versions. Selenium Grid has 2 versions - the

older Grid 1 and the newer Grid 2.

Fig 7.Selenium Grid

Selenium Grid uses a hub-node concept. It only run the

test on a single machine called a hub, but the execution

will be done by different machines called nodes.

2.4.1 Features:

 It can be extended by distributing tests on a

 number of machines. Executions can be

 done parallel.

 It manages multiple environments from a central point

and make test to run easily against a huge combination

of browsers as well as Operating System.

 Maintenance time will be reduced for the grid by

allowing us to implement regular hooks to influence

virtual infrastructure for instance.

http://www.ijsret.org/

International Journal of Advanced Engineering Research and Technology (IJAERT)

Volume 5 Issue 11, November 2017, ISSN No.: 2348 – 8190

859

www.ijaert.org

2.4.2 Limitations:

 Selenium grid by itself cannot run multiple

 tests in parallel, the framework like TestNG

 or JUnit are used to provide multiple tests to

 the grid.

III. Locating Strategies in Selenium

Locating strategies are used by Selenium to find

and match the elements of our AUT(Application Under

Test) with which it needs to perform

some action(like clicking, typing, selecting, verifying).It

is used in Target column of Selenium IDE. In simple

words it tells Selenium which HTML element of our

application a command has to perform the action.

For many Selenium commands, a target is

required. This target identifies an element in the content

of the web application, and consists of the location

strategy followed by the location in the format locator

Type=location. The various locator types are explained

below with examples for each.

Fig 8.Locating Strategies

Locating Principle:-
locator Type=location

Locator Types:-
 Every object(control) visible on a webpage is a “Web

Element”.
Selenium has different ways of locating controls (web

elements).

 Id

 Class Name

 Name

 Link

 XPath

 CSS Selector

 DOM

ID:-
This approach is considered superior compared to other

locators Unfortunately there are many cases when an

element does not have an id (or the id is somehow

dynamically generated and unpredictable). In these cases

we will need to use an alternative locator strategy.

Target Format: id=id of the element

Example:- id = "userName"

Class Name : There may be multiple elements with the

same name, if we just use find Element By Class Name.

Target Format: class=class name of the element

Example:- class=”D(ib) Py(0) Zoom Va(t) uhBtn Ff(ss)!

Fw(40) Bxz(bb) Td(n) D(ib) Zoom Va(m) Ta(c) Bgr(rx)

Bdrs(3px) Bdw(1px) M(0)! C(#fff) uh-ignore-rapid

Cur(p)”

Name:-
Locating elements by name are very similar to locating

by ID, except that we use the "name=" prefix instead.

Note:-If multiple elements have the same value for a

name attribute, then we can use filters to further refine

our location strategy.

Target Format: name=name of the element

Example :- name=”p”

Link:- This approach uses a hyperlink in the web page

to locate the element by using the text of the link.we can

find elements of “a” tags(Link) with the link names. Use

this when we know link text used within an anchor tag.

If two links with the same text are present, then the first

match will be used.

Target Format: link=link_text

 Example:- link=Sign in

XPath:-
XPath is the language used when locating XML

(Extensible Markup Language) nodes. While DOM is

the recognized standard for navigation through an

HTML element tree, XPath is the standard navigation

tool for XML; and an HTML document is also an XML

document (xHTML).

It can access almost any element, even those without

class, name, or id attributes.

Target : xpath=//tagname[@attribute=”value”]
Example : xpath=//input[@id=”username”]
xpath=//form[@name=”loginForm”]
xpath=//*[@name=”loginForm”]

http://www.ijsret.org/

International Journal of Advanced Engineering Research and Technology (IJAERT)

Volume 5 Issue 11, November 2017, ISSN No.: 2348 – 8190

860

www.ijaert.org

CSS:-
CSS is a language which is used for beautification of

HTML controls like button should have green color.

CSS uses Selectors for binding style properties to

elements in the document. These Selectors can be used

by Selenium as another locating strategy.

Locating by CSS Selector is more complicated than the

previous methods, but it is the most common locating

strategy of advanced Selenium users because it can

access even those elements that have no ID or

name.(Like X-Path)

Syntax:

Id: css=tag#id

 Tag=The HTML tag of the element being

accessed

 #=The hash sign. This should always be present

when using a CSS selector with ID

 Id=The Id of the element being accessed.

Example:- css=form#loginForm

Class: css=tagname.classname

Example: css= input.passfield

DOM:-
The Document Object Model (DOM), in simple terms, is

the way by which HTML elements are structured.

Selenium is able to use the DOM structure in accessing

page elements.

There are four basic ways to locate an element through

DOM:

 getElementById

 getElementsByName

 dom:name (applies only to elements within a

 named form)

 dom:index

Since selenium core is able to interpret the dom as

document so we generally remove the locator type and

directly use the location value.(Thus we can omit DOM

as locator Type and use directly the location value)

value.(Thus we can omit DOM as locator Type and use

directly the location value.

Example :-

We can locate password object by its id, using

getElementById

We can either use

dom=document.getElementById("password") or direct

value

IV. CONCLUSION

The main objective of automated testing is to reduce the

testing efforts. In this paper we have discussed about the

Web automation testing tool Selenium and its

components. Now a days Selenium is used as a best

testing tool for web applications. Future enhancements

of selenium is to test the window based applications.

REFERENCES

[1] Neha Bhateja, “A Study on Various Software

Automation Testing Tools”, International Journal of

Advanced Research in Computer Science and Software

Engineering Research Paper, Volume 5, Issue 6, June

2015, ISSN: 2277 128X.

[2] Chandraprabha, Ajeet Kumar, Sajal Saxena,”
Systematic study of a web testing tool: selenium ”
International Journal Of Advance Research In Science

and Engineering, IJARSE, Vol. No.2, Issue No.11,

November 2013.

[3] Fei Wang, Wencai Du-"A Test Automation

Framework Based on WEB" 11
th
 International

Conference on Computer and Information Science

(ICIS), ISBN:978-1-4673-1536-4 IEEE/ACIS May 30

2012-June 2012.

[4] Monika Sharma and Rigzin Angmo,“Web Based

Automation Testing and Tools” , international journal of

Computer Science And Information Technology

(IJCSIT), Vol.5(1),2014, ISSN:0975-9646.

[5]Sherry single,Harpreet kaur,”Selenium keyword

automation testing framework”, International Journal of

Advanced Research In Computer Science and Software

 Engineering, Vol.4, 2014.

[6] Nidhika Uppal, Vinay Chopra,”Design and

Implementation in Selenium IDE with Web Driver”
International Journal of Computer Applications (0975 –
8887) Volume 46–No.12May 2012.

[7] Y.C.Kulkarni, “Automating the web applications

using the selenium RC”, ASM's International Journal of

Ongoing Research in Management and IT e-ISSN-2320-

0065, 2011.

http://www.ijsret.org/

	1.2.1 Test tool selection:
	1.2.3 Test Planning:
	1.2.5 Test Implementation:
	2. AUTOMATION TESTING
	TOOL: SELENIUM
	Selenium is a software testing tool [2] used for regression testing. It is an open source testing tool that provides playback and recording facility for regression testing. The Selenium IDE only supports Mozilla Firebox web browser.
	IV. CONCLUSION

