
Efficient Dynamic Tracking Control System for 
Mobile Network Agents 

D.Neelakant 
Department of Computer Science and Engineering 

Kamala institute of tech & sci, Singapuram Huzurabad , 
Dist:Karimnager,Andhra Pradesh, India-505468 

Anjaneyulu. S  
Department of Computer Science and Engineering  

Balaji Institute of Tech& Sci,Narsampet,Warangal 
 Andhra Pradesh, India-506331 

M.Srinivas 
Associate Professor & HoD  

Department of Computer Science and Engineering  

Balaji Institute of Tech& Sci,Narsampet,Warangal 
 Andhra Pradesh, India-506331 

Abstract- This  paper  presents  a  complete tracking of high-performance decentralized  control design that permit 

mobile agents with  dynamic distributed networked sensing capabilities to track  the desired  routs(trajectory) , identify 

what information must be distributed to each agent for tracking, and develop methods to minimize the communication 

needed for the trajectory information distribution.(This paper I have written/modified for submition of my  M.tech thesis)    

Keywords - dynamical networks, tracking 

I .INTRODUCTION 

The several modern applications, teams of autonomous agents with distributed sensing and/or communication 
capabilities are required to cooperatively complete a complex task. Typically, such controllers use a two loop 
structure(nonlinear , linear controller),  where  the  outer  loop  enervates  reference  signals  based  on tracking  
errors  and  the  inner  loop uses  the  reference signals  to  improve  the  dynamics .  For instance, teams of 
autonomous vehicles, which sense relative positions, may need to follow a “lawn-mower” pattern to search a 
minefield. Similarly, a bank of antennas may need to follow a path in a coordinated fashion. At first  these tracking 
problems for networks of  communicating/sensing agents seem no more  challenging than automated tracking 
problems for single devices. Seemingly, we could distribute to each agent in the network its desired path, which the 
agent could then independently. However, many of the tracking problems that our group has encountered—in 
applications ranging from air traffic management to sensor fusion and vehicle control .The Linear  Parameter  
Varying  (LPV)  controllers  can overcome  these  problems  by  systematically  incorporating  information  about  
variation  of  vehicle  dynamics  with scheduling variables.   

Fundamentally, what makes these problems challenging is that, due to cost or security or complexity constraints, 
individual agents do not have sophisticated enough observation capabilities to independently know where they are, 
and so move as they wish in their environment. Instead, each agent depends in an essential way on sensing of or 
communication with other agents to be able to follow desired paths . 

Second  viewpoint, we have found that each agent fundamentally needs to sense/receive information about other 
agents simply to operate, i.e., coordination is needed for task completion. For tracking tasks in particular, this 
fundamental need to use sensed information also implies that information about other agents’ desired trajectories 
must be communicated for informed use of the sensed information.  In this paper, we  explains the controller  

International Journal of Latest Trends in Engineering and Technology (IJLTET)

Vol. 2 Issue 3 May 2013 30 ISSN: 2278-621X



architecture ,different  methodology for tracking control in networks whose agents depend on distributed  
ensing/communication capabilities to complete desired tasks. 

Due to the volume and performance requirement, motion control in electronic manufacturing requires high speed 
and precision. In this paper, we present a systematic approach to improve the performance of point-to-point motion 
of a positioning system by designing a collision free path from starting to destination point. 

The motivation of this  paper is  to create a dynamic  tracking Control frame work that achieve high performance 
and  remains relatively easy to design and implement. The following approach to study to tracking control  in 
communicating-agent networks. 
Our overall approach  of  control design is  summarized below: 
Chapter II: Verify system linearity for small amplitude inputs using LTI  model (Linear time invariant). 
Chapter III :Implementation of Dynamic Control and Refinement model. 
Chapter IV: Introduced a new  swarm optimization (PSO) algorithm for  identifying collision free paths. 
Chapter V: Interpolation of the obtained collision-free path, which is solved using a radial basis function neural 
network (RBFNN), and trajectory generation, based on the interpolated path. 
Chapter VI:Advanced Algorithms for Motion Planning Problem 

II. LINEAR TIME INVARIANT (LTI) MODEL 

Linear time invariant (LTI) model identification based on input/output responses may be performed in either time or 
frequency domains. The time domain approach is adversely affected by high frequency noise. Therefore we decided 
to use the frequency domain subspace identification method [1], [2]. The experimental transfer function is first 
obtained by a sine sweep (with input amplitude chosen small enough to avoid saturation but large enough to increase 
signal-to-noise ratio).  

In system identification, it is important to consider possible input/output delays. If the experimental system contains 
a pure delay, direct application of LTI identification will often approximate the delay with non-minimum phase 
zeros and additional poles. The approximation can be avoided by including a pure time delay in the identification 
procedure by time shifting the output signal relative to the input signal before performing the identification. 
Including the delay in this manner can result in identified models of lower order, better agreement between 
simulated and experimental  responses (no artificial undershoot), and significantly less non minimum phase behavior 
in the identified model. For the inverse dynamics controller, the non-minimum phase zeros can compromise the 
tracking performance, while the pure delay simply leads to a time shift in the response. The gain and  phase  
comparison between the experiment frequency and time step responses are shown in Fig. 1. 

Fig. 1. Frequency Gain/Phase and Time Step Response  Comparison between Experimental Data and Identified Model 

III. DYNAMICS CONTROL AND   REFINEMENT 

In this chapter  to use the identified model, G, to construct  dynamics filter  ,by replacing the unstable zeros by the 
stable mirror images and inverting the transfer function. We then apply the inverse dynamics filter to the desired 
output   to generate the command input:  u = .

A trajectory generator is used to generate  (t) based on the position, velocity, and acceleration constraints. 
To avoid unbounded  problems, we use a half-sine profile for acceleration and deceleration. The experimental result 
of the 500µm move  is shown in Figure 2. 

International Journal of Latest Trends in Engineering and Technology (IJLTET)

Vol. 2 Issue 3 May 2013 31 ISSN: 2278-621X



                                                                                       Fig. 2   dynamics filter 

Large tracking errors near the entry into and inside the settling zone are observed. Clearly, using inverse 
dynamics filter alone does not meet the desired performance specification.

To correct for this mismatch between experimental response and model  we modify the input to u =   +   . 

where  is obtained using the iterative refinement algorithm based on the output tracking error . Using the 
complete trajectory tracking error to iteratively update the command input is known as iterative learning control 
(ILC). This concept was originally introduced in robot tracking control. For this study, we apply the gradient descent 
approach with the nominal LTI model, G, as the approximate gradient. The basic algorithm is summarized below: 

      Algorithm : Given    =  and = .

1)   Apply u  to the physical system and obtain the output sequence    y  =  .

2)   Update u by adding following term  

 u = - y -  y*)                                                                                                                     (1) 

Where  is the adjoint of G, and may be set as  a sufficiently small constant or found by using a line 
search (which would require additional runs).  
3)   Iterate until   or   becomes sufficiently small. 
The key step in the above algorithm is the update equation  (1). Let the state space parameters of G be (A,B,C,D).
The adjoint    is given by   (    but it must propagate backward in time from the zero state. 
To implement  y we first reverse y backwards in time, filter it forward in time through the filter. The result of 
iterative refinement for the move length 500µm is shown below fig 3 

Fig 3 Experimental results of applying iterative refinement to 500µm. 

IV. PARTICLE SWARM OPTIMIZATION(PSO) 

PSO algorithm is multi-agent evolutionary search technique. The space of solution is searched with multiple 
particles, whereby every particle is directed on the basis of its own experience and the experience of the whole 
swarm. Basic variables are position of particle, which represents the potential solution, velocity of the particle, 

International Journal of Latest Trends in Engineering and Technology (IJLTET)

Vol. 2 Issue 3 May 2013 32 ISSN: 2278-621X



which represents the change of position in current iteration and fitness function, which is the measure of success of 
the particle. 

Let and  denote the position and velocity of i-th particle in k-th iteration, respectively. Algorithm can be 

described by following steps: 

1. Problem definition: 

Allowable position and velocity ranges [ ] and  [ ], respectively, swarm size N,

measure of success for every particle fitness function ; value of this function measures the success of  

the i-th particle; 
2. Algorithm initialization: 

Positions and velocities of particles are initialized with uniform random numbers from [ ] and  

[ ], respectively, i.e., 

( )  and       ( )     (2)

 where and are uniform random numbers from [0,1]; 

                

3. Fitness function evaluation:

For every particle in swarm, the following variables are evaluated: fitness function, self-best position  
 and global-best position  ;

4. Velocity correction: 

 -   (3)  ]  +  -   ]                           (3) 

Where   and     denote self-confidence and swarm-confidence  parameters, respectively, while  w  

stands for inertia factor and  , are random numbers from [0,1]. Inertia factor determines the effect of  

current motion on a future motion. Large values of this parameter leads to global search, while small values 
leads to fine, local search, which is suitable when algorithm converges. Thus, variable value of inertia is 
used, such that inertia starts from large value, and decreases as algorithm iterates. Also self-confidence and 
swarm-confidence factors should be variable. Self-experience should have dominant effect on particle 
motion at the beginning of the algorithm, while later, swarm experience should prevail. Particles velocities 
must stay inside  allowable interval [ ]; 

5. Position correction: 

 +                                                                                                    (4) 

Position must stay inside allowable interval    [ ]; 

6. Termination of algorithm: 

Algorithm terminates when maximum number of iterations is reached, or good enough value of fitness 
function. erformance of algorithm heavily depends on particles diversity. It is preferred that swarm consists 
of diverse particles at the beginning of algorithm. Later, as algorithm iterate, diversity should decrease, in 
order to finely converge to optimum. It is necessary to allow passing through detected optimum, in order to 
avoid stucking in it, because it can be local minima. 

V. RADIAL BASIS FUNCTION NEURAL NETWORK (RBFNN) 
Radial basis function neural networks (RBFNN) are three-layer neural networks. Their structure is shown on Fig. 4. 

These networks are widely used for nonlinear function approximation, as well as multilayer perceptrons (MLPs). 
Although they cannot achieve the accuracy of the MLP networks, their advantage over MLP is in much faster 

International Journal of Latest Trends in Engineering and Technology (IJLTET)

Vol. 2 Issue 3 May 2013 33 ISSN: 2278-621X



training. For achieving the same accuracy as MLP, RBFNN is usually more complex, i.e., it has more nodes in the 
hidden layer. 

                                                                     Fig. 4 – Structure of RBFNN 

Let  x = [  and   y = [    denote input and output vectors, respectively. Activation function of 
hidden neurons is: 

(x)  =  ,   i  =   1,…., n                                                                                                    (5) 

Where  | .  |  denotes Euclidean norm. Activation function  (x)  is centred in vector i w , while  denotes spread of 
the function. Output layer is linear, so output of the network is linear combination of the hidden layer outputs: 

      = (x)  ,   j =  1,…..m                                                                                                         (6)

It can be seen from (5) that activation of hidden layer neuron i is the strongest when   x =  ,     because    (x)   
=1. Activation decreases when input departs from vector .  Basic idea is to divide input space onto k overlapping 
regions, while every hidden neuron will be active only in one region, i.e. some neighbourhood of  . If region 

width is too small, network generalizes poorly, while for large values of this parameter, interpolation can be 
coarse. 
 Network can be trained such that approximation error on the training set is zero. This can be impractical, because 
size of the hidden layer is equal to the size of the training set. Thus, training algorithm should gradually increase the 
size of hidden layer until desired value of approximation error or maximum number of hidden neurons is reached.          
                       

VI .ADVANCED ALGORITHMS FOR MOTION PLANNING PROBLEM 

Path generation using PSO algorithm 

It is assumed that the positions of obstacles are known and static. The goal is generation of collision free path from 
starting to destination point, so that the path is as short as possible. This task will be solved using PSO algorithm. 
Generated path is given as an array of two-dimensional points, so the obtained path is not smooth. Robot has fixed 
maximum step size, i.e. maximum distance between current and next point  . Increase of this parameter speeds 
up the algorithm, but decreases the path smoothness and decreases the possibility of algorithm to be get stuck in 
complex scenarios with large number of close obstacles. It is also assumed that all obstacles are circular and there is 
no overlapping between obstacles, although they can touch each other, but not more than two. Sizes of all obstacles 
are increased for the dimension of mobile robot. The experimental results is shown in fig 5 

International Journal of Latest Trends in Engineering and Technology (IJLTET)

Vol. 2 Issue 3 May 2013 34 ISSN: 2278-621X



Fig 5 path generation using PSO 

Region of search is illustrated on above fig  Let (  , ) denotes optimal point generated by PSO in previous 
iteration, which represents the center of search region in current iteration, while (  , ) denotes destination point.. 

Region of  search is circular sector with central angle of 270°, symmetric relative to line joining points  (  , ) and  
(  , ). On this way, algorithm always progresses in sense that every new point is closer to destination than 

previous one. This solution gives better results than circle. On the other hand this solution is better than half–circle, 
because it could happen that optimal solution lies in the corner of chosen search region, which is not covered by the 
half–circle. 

Fig 6 Search region of PSO algorithm 

More complex situation arises when the region of search collides with obstacles. In this case it is necessary to 
eliminate all points that are located at the intersection of search region and obstacles.  These situations can be 
avoided on two ways. The first way is to mark these points as inadequate by giving them large positive value of 
fitness function. This solution is simple, but in this way population loses some particles, i.e., artificially reduces the 
size of the population. The other way is to move points that lie inside the obstacles to the obstacle edge (see Fig. 6). 
On this way algorithm will move particles into the allowable part of search region, and there is no loss of population 
particles. 

Particle (  , ) and centre of the search region (  , ), and for this new particle fitness function is evaluated. 
Particles in the PSO algorithm represent two-dimensional points in polar coordinates (radius with respect to the 
centre of the search area   and angle  between x-axis and line joining particle and the centre of the search area). 
Next position should be obtained such that total length of the path is minimal and collision with obstacles is 
minimal. Path  length F, from (  ,  )   to the destination  (  , ) over (  , ) is  

F = + = + cos = +  .            (7)                                 

Fitness function is weighted sum of path length F, given in (7) and  additional term P(i) , which represents penalties 
if path leads over the obstacles. 

International Journal of Latest Trends in Engineering and Technology (IJLTET)

Vol. 2 Issue 3 May 2013 35 ISSN: 2278-621X



This term has to be variable, taking into account size, position and orientation of the obstacles. Finally, fitness 
function    is given by: 

   =  +  P(i),  P(i) = ,

= +                                                                                (8)                                               

Penalization factor P(i) consists of two factors , which represents penalization due to the existence of 
intersection between obstacle and path generated from current particle to the destination point, and , which 
represents penalization due to the existence of intersection between obstacle and path generated from particle given 
in the previous algorithm iteration to the  current particle. 

, ,  weight path length and path intersection with obstacles, respectively. Larger values of the  will give a 
shorter path, which leads mobile robot very close to the obstacles, while larger values of  means less 
chance for collision between mobile robot and obstacles at the expense of longer path. It is recommended to choose 
larger values   in cases when algorithm works with larger values of the radius   , in order to ensure 
that generated path does not lead over the obstacles. 

Fig 7  penalization factor evaluation for final result 

Let us assume that there is obstacle between current and destination point, as shown on Fig. 3. Robot can circumvent 
obstacle from either side, but it is rational to select the shorter path. This implies that penalization factor should be 
shorter of these two paths. So, penalization factor can be defined as: 

(i) = min ,  j ,k                                                                                           (9) 

Where  denotes arc of the obstacle intersected by path, and c(s) denotes circumference of adjacent obstacle. 

VII .SIMULATION RESULTS 

Proposed algorithm for motion planning of mobile robot is implemented in MATLAB  and Java packages. The 
scenario with seven obstacles is adopted. In order to include robot dimensions, obstacles are enlarged with the 
dimension of mobile robot. It is assumed that robot width is 2b �40cm and wheel radius is r �8 cm. Maximum 
angular velocities of the wheels are  = =16 rad/s  It is assumed that therobot position and orientation 
measurements are corrupted with white Gaussian noise, which standard deviations are 1 cm and 1°, respectively 
Starting point is (2,4.5)m, while the destination point is (4.5,0.5)m. PSO algorithm searches space with the 30 
particles in the swarm. Particles velocities are bounded on interval [–1,+1]. Search area radius is   = 0.25m. 
Choice of this parameter is critical. Small values lead to fine search, which produces smooth path with large number 
of points, but there is possibility of stacking between obstacles in complex scenarios, because algorithm has to 
choose between particles with similar quality. Larger values of     give the coarse path, but the possibility to be 

International Journal of Latest Trends in Engineering and Technology (IJLTET)

Vol. 2 Issue 3 May 2013 36 ISSN: 2278-621X



get stuck is very small. The algorithm terminates after 100 iterations. Values of weights in fitness function are =1,
= =5.

fig 8: Fig   shows an experimental results using Java package 

VIII.CONCLUSION 

Solution of motion planning problem can be divided into generation of collision free path using PSO algorithm, 
interpolation of obtained path using RBFNN, trajectory generation based on interpolated path in this paper. In 
phases where obtained path is interpolated using RBFNN, it could happen that the generated path is not collision 
free, so this controller has a main goal to push mobile robot away from the obstacles. Although it is assumed that 
obstacles are circular, proposed method, with slight modifications, can be applied on obstacles of arbitrary shape. 
This approach can be applied in dynamic environments in which exist moving obstacles, due to action of obstacle 
avoidance. It can be also applied even in multi robot environments, with some modification of tracking control law. 
We expect to address design of advanced high-performance tracking controllers in future work; following references 
are used for recent work on designing high-performance decentralized controllers

REFERENCES
[1] S. Dutta: Obstacle Avoidance of Mobile Robot using PSO-based Neuro Fuzzy Technique, International Journal of Computer Science and

Engineering, Vol. 2, No. 2, March 2010, pp. 301 – 304. 
[2] J.A. Fax and R.M. Murray, “Information Flow and Cooperative Control of Vehicle Formations,” IEEE Trans.  Automatic Control, vol. 49, 

no. 9, pp. 1465-1476, Sept. 2004. 
[3] M. Bowling, M. Veloso: Motion Control in Dynamic Multi – Robot Environments, IEEE International  Symposium on Computational 

Intelligence in Robotics and Automation, Monterey, CA , USA, 8 – 9 Nov. 1999, pp. 168 – 173. 
[4] R.O. Saber and R.M. Murray, “Consensus Problems in Networks of Agents with Switching Topology and Time-Delays,” IEEE Trans. 

Automatic Control, vol. 49, no. 9, pp. 1520-1533, Sept. 2004. 
[5] R. Olfati-Saber, J.A. Fax, and R.M. Murray, “Consensus and Cooperation in Networked Multi-Agent Systems,” Proc. IEEE, vol. 95, no. 1, 

pp. 215-233, Jan. 2007. 
[6] M. Šuši , A. osi , A. Ribi , D. Kati : An Approach for Intelligent Mobile Robot Motion Planning and Trajectory Tracking in Structured 

Static Environments, International Symposium on Intelligent Systems and Informatics, Subotica, Serbia, 8 – 10 Sept. 2011, pp. 17 – 22. 
[7] Y. Wan, S. Roy, and A. Saberi, “A New Focus in the Science of Networks: Toward Methods for Design,” Proc. Royal Soc. A, vol. 464, pp. 

513-535, Mar. 2008. 
[8] Y. Wan, S. Roy, A. Saberi, and A. Stoorvogel, “A Multiple Derivative and Multiple Delay Paradigm for Decentralized Controller Design,”

Proc. 48th IEEE Conf. Decision and Control (CDC 09), 2009. 
[9] 9. Liang Chen, Sandip Roy, and Ali Saberi   On the Information Flow Required for Tracking Control in Networks of Mobile Sensing

Agents IEEE Trans, ON MOBILE COMPUTING, VOL. 10, NO. 5, APRIL 2011. 
[10] J. Canny: The Complexity of Robot Motion Planning, MIT Press, Cambridge, MA, USA, 1988. 

International Journal of Latest Trends in Engineering and Technology (IJLTET)

Vol. 2 Issue 3 May 2013 37 ISSN: 2278-621X


