
Ruby

Ruby is a pure object-oriented programming

language. It was created in 1993 by Yukihiro

Matsumoto of Japan.

Features of Ruby

• Ruby is an open-source and is freely available on the Web, but it is subject to a license.

• Ruby is a general-purpose, interpreted programming language.

• Ruby is a true object-oriented programming language.

• Ruby is a server-side scripting language similar to Python and PERL.

• Ruby can be used to write Common Gateway Interface (CGI) scripts.

• Ruby can be embedded into Hypertext Markup Language (HTML).

• Ruby has a clean and easy syntax that allows a new developer to learn very quickly and easily.

• Ruby has similar syntax to that of many programming languages such as C++ and Perl.

• Ruby is very much scalable and big programs written in Ruby are easily maintainable.

• Ruby can be used for developing Internet and intranet applications.

• Ruby can be installed in Windows and POSIX environments.

• Ruby support many GUI tools such as Tcl/Tk, GTK, and OpenGL.

• Ruby can easily be connected to DB2, MySQL, Oracle, and Sybase.

• Ruby has a rich set of built-in functions, which can be used directly into Ruby scripts.

puts "Hello, Ruby!";

Ruby Identifiers

Identifiers are names of variables, constants, and methods. Ruby identifiers are case sensitive.

These reserved words may not be used as constant or variable names. They can, however, be used as method names.

BEGIN do next then

END else nil true

alias elsif not undef

and end or unless

begin ensure redo until

break false rescue when

case for retry while

class if return while

def in self __FILE__

defined? module super __LINE__

Comments are lines of annotation within Ruby code that are ignored at runtime. A single line comment starts with # character and they extend from #

to the end of the line as follows

This is a single line comment.

puts "Hello, Ruby!"

Ruby Multiline Comments

puts "Hello, Ruby!"

=begin

This is a multiline comment and con spwan as many lines as you

like. But =begin and =end should come in the first line only.

=end

Ruby - Operators
For each operator (+ - * / % ** & | ^ << >> && ||), there is a corresponding form of abbreviated assignment operator (+= -= etc.).

+ Addition − Adds values on either side of the operator.

− Subtraction − Subtracts right hand operand from left hand operand.

* Multiplication − Multiplies values on either side of the operator.

/ Division − Divides left hand operand by right hand operand.

% Modulus − Divides left hand operand by right hand operand and returns remainder.

** Exponent − Performs exponential (power) calculation on operators.

Ruby Comparison Operators

Operator Description Example

== Checks if the value of two operands are equal or not, if yes then
condition becomes true.

(a == b) is not true.

!= Checks if the value of two operands are equal or not, if values are not
equal then condition becomes true.

(a != b) is true.

> Checks if the value of left operand is greater than the value of right
operand, if yes then condition becomes true.

(a > b) is not true.

< Checks if the value of left operand is less than the value of right
operand, if yes then condition becomes true.

(a < b) is true.

>= Checks if the value of left operand is greater than or equal to the value
of right operand, if yes then condition becomes true.

(a >= b) is not true.

<= Checks if the value of left operand is less than or equal to the value of
right operand, if yes then condition becomes true.

(a <= b) is true.

<=> Combined comparison operator. Returns 0 if first operand equals
second, 1 if first operand is greater than the second and -1 if first
operand is less than the second.

(a <=> b) returns -1.

=== Used to test equality within a when clause of a case statement. (1...10) === 5 returns true.

.eql? True if the receiver and argument have both the same type and equal
values.

1 == 1.0 returns true, but 1.eql?(1.0) is false.

equal?
True if the receiver and argument have the same object id.

if aObj is duplicate of bObj then aObj ==
bObj is true, a.equal?bObj is false but
a.equal?aObj is true.

Ruby Assignment Operators

Operator Description Example

= Simple assignment operator, assigns values from
right side operands to left side operand.

c = a + b will assign
the value of a + b
into c

+= Add AND assignment operator, adds right
operand to the left operand and assign the result
to left operand.

c += a is equivalent
to c = c + a

-= Subtract AND assignment operator, subtracts
right operand from the left operand and assign
the result to left operand.

c -= a is equivalent
to c = c - a

*= Multiply AND assignment operator, multiplies
right operand with the left operand and assign the
result to left operand.

c *= a is equivalent
to c = c * a

/= Divide AND assignment operator, divides left
operand with the right operand and assign the
result to left operand.

c /= a is equivalent
to c = c / a

%= Modulus AND assignment operator, takes
modulus using two operands and assign the
result to left operand.

c %= a is equivalent
to c = c % a

**= Exponent AND assignment operator, performs
exponential (power) calculation on operators and
assign value to the left operand.

c **= a is equivalent
to c = c ** a

Ruby Parallel Assignment

Ruby also supports the parallel assignment of variables.

a = 10

b = 20

c = 30

example: a, b, c = 10, 20, 30

Ruby Bitwise Operators

Bitwise operator works on bits and performs bit by bit operation.

Operator Description Example

& Binary AND Operator copies a bit to the
result if it exists in both operands.

(a & b) will give 12, which is 0000
1100

| Binary OR Operator copies a bit if it exists
in either operand.

(a | b) will give 61, which is 0011
1101

^ Binary XOR Operator copies the bit if it is
set in one operand but not both.

(a ^ b) will give 49, which is 0011
0001

~
Binary Ones Complement Operator is
unary and has the effect of 'flipping' bits.

(~a) will give -61, which is 1100
0011 in 2's complement form due
to a signed binary number.

<< Binary Left Shift Operator. The left
operands value is moved left by the
number of bits specified by the right
operand.

a << 2 will give 240, which is 1111
0000

>> Binary Right Shift Operator. The left
operands value is moved right by the
number of bits specified by the right
operand.

a >> 2 will give 15, which is 0000
1111

Ruby Logical Operators

The following logical operators are supported by Ruby language

Assume variable a holds 10 and variable b holds 20, then −

Operator Description Example

and Called Logical AND operator. If both the operands are true,
then the condition becomes true.

(a and b) is
true.

or Called Logical OR Operator. If any of the two operands are non
zero, then the condition becomes true.

(a or b) is
true.

&& Called Logical AND operator. If both the operands are non
zero, then the condition becomes true.

(a && b) is
true.

|| Called Logical OR Operator. If any of the two operands are non
zero, then the condition becomes true.

(a || b) is
true.

! Called Logical NOT Operator. Use to reverses the logical state
of its operand. If a condition is true, then Logical NOT operator
will make false.

!(a && b) is
false.

not Called Logical NOT Operator. Use to reverses the logical state
of its operand. If a condition is true, then Logical NOT operator
will make false.

not(a && b)
is false.

Ruby Ternary Operator

There is one more operator called Ternary Operator. It first evaluates an expression for
a true or false value and then executes one of the two given statements depending
upon the result of the evaluation. The conditional operator has this syntax −

Operator Description Example

? : Conditional
Expression

If Condition is true ? Then value X : Otherwise value
Y

Ruby Range Operators

Sequence ranges in Ruby are used to create a range of successive values - consisting
of a start value, an end value, and a range of values in between.

In Ruby, these sequences are created using the ".." and "..." range operators. The two-
dot form creates an inclusive range, while the three-dot form creates a range that
excludes the specified high value.

Operator Description Example

.. Creates a range from start point to end
point inclusive.

1..10 Creates a range from 1 to
10 inclusive.

... Creates a range from start point to end
point exclusive.

1...10 Creates a range from 1 to
9.

Ruby Dot "." and Double Colon "::" Operators

You call a module method by preceding its name with the module's name and a period,
and you reference a constant using the module name and two colons.

The :: is a unary operator that allows: constants, instance methods and class methods
defined within a class or module, to be accessed from anywhere outside the class or
module.

MR_COUNT = 0 # constant defined on main Object class

module Foo

 MR_COUNT = 0

 ::MR_COUNT = 1 # set global count to 1

 MR_COUNT = 2 # set local count to 2

end

puts MR_COUNT # this is the global constant

puts Foo::MR_COUNT # this is the local "Foo" constant

Ruby if...else Statement

x = 1

if x > 2

 puts "x is greater than 2"

elsif x <= 2 and x!=0

 puts "x is 1"

else

 puts "I can't guess the number"

end

Ruby if modifier

Syntax
code if condition

Executes code if the conditional is true.

Example

$debug = 1

print "Hai\n" if $debug

This will produce the following result −

Hai

Ruby unless Statement

Syntax
unless conditional [then]

 code

[else

 code]

end

Executes code if conditional is false. If the conditional is true, code specified in the else

clause is executed.

x = 1

unless x>=2

 puts "x is less than 2"

 else

 puts "x is greater than 2"

end

x is less than 2

Ruby case Statement

Syntax
case expression

[when expression [, expression ...] [then]

 code]...

[else

 code]

end

Compares the expression specified by case and that specified by when using the ===
operator and executes the code of the when clause that matches.

The expression specified by the when clause is evaluated as the left operand. If no
when clauses match, case executes the code of the else clause.

A when statement's expression is separated from code by the reserved word then, a
newline, or a semicolon. Thus −

case expr0

when expr1, expr2

 stmt1

when expr3, expr4

 stmt2

else

 stmt3

end

$age = 5

case $age

when 0 .. 2

 puts "baby"

when 3 .. 6

 puts "little child"

when 7 .. 12

 puts "child"

when 13 .. 18

 puts "youth"

else

 puts "adult"

end

little child

Ruby while Statement

Syntax

while conditional [do]

 code

end

Executes code while conditional is true. A while loop's conditional is separated
from code by the reserved word do, a newline, backslash \, or a semicolon ;.

Example

$i = 0

$num = 5

while $i < $num do

 puts("Inside the loop i = #$i")

 $i +=1

end

nside the loop i = 0

Inside the loop i = 1

Inside the loop i = 2

Inside the loop i = 3

Inside the loop i = 4

Ruby until Statement

until conditional [do]

 code

end

Executes code while conditional is false. An until statement's conditional is separated

from code by the reserved word do, a newline, or a semicolon.

Example

$i = 0

$num = 5

until $i > $num do

 puts("Inside the loop i = #$i")

 $i +=1;

end

Inside the loop i = 0

Inside the loop i = 1

Inside the loop i = 2

Inside the loop i = 3

Inside the loop i = 4

Inside the loop i = 5

Ruby for Statement

Syntax
for variable [, variable ...] in expression [do]

 code

end

Executes code once for each element in expression.

Example

for i in 0..5

 puts "Value of local variable is #{i}"

end

Here, we have defined the range 0..5. The statement for i in 0..5 will allow i to take
values in the range from 0 to 5 (including 5). This will produce the following result −

Value of local variable is 0

Value of local variable is 1

Value of local variable is 2

Value of local variable is 3

Value of local variable is 4

Value of local variable is 5

A for...in loop is almost exactly equivalent to the following −

(expression).each do |variable[, variable...]| code end

except that a for loop doesn't create a new scope for local variables.

A for loop's expression is separated from code by the reserved word do, a newline, or
a semicolon.

Example

(0..5).each do |i|

 puts "Value of local variable is #{i}"

end

This will produce the following result −

Value of local variable is 0

Value of local variable is 1

Value of local variable is 2

Value of local variable is 3

Value of local variable is 4

Value of local variable is 5

Ruby break Statement

Syntax
break

Terminates the most internal loop. Terminates a method with an associated block if

called within the block (with the method returning nil).

for i in 0..5

 if i > 2 then

 break

 end

 puts "Value of local variable is #{i}"

end

This will produce the following result −

Value of local variable is 0

Value of local variable is 1

Value of local variable is 2

Ruby next Statement

Syntax
next

Jumps to the next iteration of the most internal loop. Terminates execution of a block if
called within a block (with yield or call returning nil).

Example

for i in 0..5

 if i < 2 then

 next

 end

 puts "Value of local variable is #{i}"

end

This will produce the following result −

Value of local variable is 2

Value of local variable is 3

Value of local variable is 4

Value of local variable is 5

Ruby redo Statement

Syntax
redo

Restarts this iteration of the most internal loop, without checking loop condition.
Restarts yield or call if called within a block.

Example

for i in 0..5

 if i < 2 then

 puts "Value of local variable is #{i}"

 redo

 end

end

This will produce the following result and will go in an infinite loop −

Value of local variable is 0

Value of local variable is 0

Ruby - Built-in Functions

Functions for Numbers

num = 12.40

puts num.floor # 12

puts num + 10 # 22.40

puts num.integer? # false as num is a float.

Sr.No. Methods & Description

1
n + num

n - num

n * num

n / num

Performs arithmetic operations: addition, subtraction, multiplication, and division.

2
n % num

Returns the modulus of n.

3
n ** num

Exponentiation.

4
n.abs

Returns the absolute value of n.

5
n.ceil

Returns the smallest integer greater than or equal to n.

6
n.coerce(num)

Returns an array containing num and n both possibly converted to a type that
allows them to be operated on mutually. Used in automatic type conversion in
numeric operators.

7
n.divmod(num)

Returns an array containing the quotient and modulus from dividing n by num.

8
n.floor

Returns the largest integer less than or equal to n.

9
n.integer?

Returns true if n is an integer.

10
n.modulo(num)

Returns the modulus obtained by dividing n by num and rounding the quotient
with floor

11
n.nonzero?

Returns n if it isn't zero, otherwise nil.

12
n.remainder(num)

Returns the remainder obtained by dividing n by num and removing decimals
from the quotient. The result and n always have same sign.

13
n.round

Returns n rounded to the nearest integer.

14
n.truncate

Returns n as an integer with decimals removed.

15
n.zero?

Returns zero if n is 0.

16
n & num

n | num

n ^ num

Bitwise operations: AND, OR, XOR, and inversion.

17
n << num

n >> num

Bitwise left shift and right shift.

18
n[num]

Returns the value of the numth bit from the least significant bit, which is n[0].

19
n.chr

Returns a string containing the character for the character code n.

20
n.next

n.succ

Returns the next integer following n. Equivalent to n + 1.

21
n.size

Returns the number of bytes in the machine representation of n.

22
n.step(upto, step) {|n| ...}

Iterates the block from n to upto, incrementing by step each time.

23
n.times {|n| ...}

Iterates the block n times.

24
n.to_f

Converts n into a floating point number. Float conversion may lose precision
information.

25
n.to_int

Returns n after converting into interger number.

Functions for Math

Sr.No. Methods & Description

1
atan2(x, y)

Calculates the arc tangent.

2
cos(x)

Calculates the cosine of x.

3
exp(x)

Calculates an exponential function (e raised to the power of x).

4
frexp(x)

Returns a two-element array containing the nominalized fraction and exponent of
x.

5
ldexp(x, exp)

Returns the value of x times 2 to the power of exp.

6
log(x)

Calculates the natural logarithm of x.

7
log10(x)

Calculates the base 10 logarithm of x.

8
sin(x)

Calculates the sine of x.

9
sqrt(x)

Returns the square root of x. x must be positive.

10
tan(x)

Calculates the tangent of x.

puts "Value of arc cosine"

puts Math::acos(0)

puts "Value of PI"

puts Math::PI

 exp

This function is used to calculate the value of ea, Return type of this function is

float.

Code:

puts "Exponential value"

puts Math::exp(3)

puts "Value of square root"

puts Math.sqrt(9)

puts "Value of natural logarithm"

puts Math.log(5)

