
First Perl Program

Interactive Mode Programming
You can use Perl interpreter with -e option at command line, which lets you execute
Perl statements from the command line. Let's try something at $ prompt as follows
−

$perl -e 'print "Hello World\n"'

This execution will produce the following result −

Hello, world

Script Mode Programming
Assuming you are already on $ prompt, let's open a text file hello.pl using vi or vim
editor and put the following lines inside your file.

#!/usr/bin/perl

This will print "Hello, World"
print "Hello, world\n";

Here /usr/bin/perl is actual the perl interpreter binary. Before you execute your script,
be sure to change the mode of the script file and give execution priviledge, generally
a setting of 0755 works perfectly and finally you execute the above script as follows
−

$chmod 0755 hello.pl
$./hello.pl

This execution will produce the following result −

Hello, world

You can use parentheses for functions arguments or omit them according to your
personal taste. They are only required occasionally to clarify the issues of precedence.
Following two statements produce the same result.

print("Hello, world\n");
print "Hello, world\n";

Perl File Extension

A Perl script can be created inside of any normal simple-text editor program. There
are several programs available for every type of platform. There are many programs
designd for programmers available for download on the web.

As a Perl convention, a Perl file must be saved with a .pl or .PL file extension in order
to be recognized as a functioning Perl script. File names can contain numbers,
symbols, and letters but must not contain a space. Use an underscore (_) in places of
spaces.

Comments in Perl

Comments in any programming language are friends of developers. Comments can
be used to make program user friendly and they are simply skipped by the interpreter
without impacting the code functionality. For example, in the above program, a line
starting with hash # is a comment.

Simply saying comments in Perl start with a hash symbol and run to the end of the
line −

This is a comment in perl

Lines starting with = are interpreted as the start of a section of embedded
documentation (pod), and all subsequent lines until the next =cut are ignored by the
compiler. Following is the example −

#!/usr/bin/perl

This is a single line comment
print "Hello, world\n";

=begin comment
This is all part of multiline comment.
You can use as many lines as you like
These comments will be ignored by the
compiler until the next =cut is encountered.
=cut

This will produce the following result −

Hello, world

Whitespaces in Perl

A Perl program does not care about whitespaces. Following program works perfectly
fine −

#!/usr/bin/perl

print "Hello, world\n";

But if spaces are inside the quoted strings, then they would be printed as is. For
example −

#!/usr/bin/perl

This would print with a line break in the middle
print "Hello
 world\n";

This will produce the following result −

Hello
 world

All types of whitespace like spaces, tabs, newlines, etc. are equivalent for the
interpreter when they are used outside of the quotes. A line containing only
whitespace, possibly with a comment, is known as a blank line, and Perl totally
ignores it.

Single and Double Quotes in Perl

You can use double quotes or single quotes around literal strings as follows −

#!/usr/bin/perl

print "Hello, world\n";
print 'Hello, world\n';

This will produce the following result −

Hello, world
Hello, world\n$

There is an important difference in single and double quotes. Only double
quotes interpolate variables and special characters such as newlines \n, whereas
single quote does not interpolate any variable or special character. Check below
example where we are using $a as a variable to store a value and later printing that
value −

#!/usr/bin/perl

$a = 10;
print "Value of a = $a\n";
print 'Value of a = $a\n';

This will produce the following result −

Value of a = 10
Value of a = $a\n$

"Here" Documents

You can store or print multiline text with a great comfort. Even you can make use of
variables inside the "here" document. Below is a simple syntax, check carefully there
must be no space between the << and the identifier.

An identifier may be either a bare word or some quoted text like we used EOF below.
If identifier is quoted, the type of quote you use determines the treatment of the text
inside the here docoment, just as in regular quoting. An unquoted identifier works
like double quotes.

#!/usr/bin/perl

$a = 10;
$var = <<"EOF";
This is the syntax for here document and it will continue
until it encounters a EOF in the first line.
This is case of double quote so variable value will be
interpolated. For example value of a = $a
EOF
print "$var\n";

$var = <<'EOF';
This is case of single quote so variable value will be
interpolated. For example value of a = $a
EOF
print "$var\n";

This will produce the following result −

This is the syntax for here document and it will continue
until it encounters a EOF in the first line.
This is case of double quote so variable value will be
interpolated. For example value of a = 10

This is case of single quote so variable value will be
interpolated. For example value of a = $a

Escaping Characters

Perl uses the backslash (\) character to escape any type of character that might
interfere with our code. Let's take one example where we want to print double quote
and $ sign −

#!/usr/bin/perl

$result = "This is \"number\"";
print "$result\n";
print "\$result\n";

This will produce the following result −

This is "number"
$result

Perl Identifiers

A Perl identifier is a name used to identify a variable, function, class, module, or other
object. A Perl variable name starts with either $, @ or % followed by zero or more
letters, underscores, and digits (0 to 9).

Perl does not allow punctuation characters such as @, $, and % within identifiers.
Perl is a case sensitive programming language.

Thus $Manpower and $manpower are two different identifiers in Perl.

Perl is a loosely typed language and there is no need to specify a type for your data
while using in your program. The Perl interpreter will choose the type based on the
context of the data itself.

Perl has three basic data types: scalars, arrays of scalars, and hashes of scalars, also
known as associative arrays. Here is a little detail about these data types.

Sr.No. Types & Description

1 Scalar

Scalars are simple variables. They are preceded by a dollar sign ($). A scalar
is either a number, a string, or a reference. A reference is actually an address
of a variable, which we will see in the upcoming chapters.

2 Arrays

Arrays are ordered lists of scalars that you access with a numeric index, which
starts with 0. They are preceded by an "at" sign (@).

3 Hashes

Hashes are unordered sets of key/value pairs that you access using the keys
as subscripts. They are preceded by a percent sign (%).

Numeric Literals

Perl stores all the numbers internally as either signed integers or double-precision
floating-point values. Numeric literals are specified in any of the following floating-
point or integer formats −

Type Value

Integer 1234

Negative integer -100

Floating point 2000

Scientific notation 16.12E14

Hexadecimal 0xffff

Octal 0577

String Literals

Strings are sequences of characters. They are usually alphanumeric values delimited
by either single (') or double (") quotes. They work much like UNIX shell quotes where
you can use single quoted strings and double quoted strings.

Double-quoted string literals allow variable interpolation, and single-quoted strings
are not. There are certain characters when they are proceeded by a back slash, have
special meaning and they are used to represent like newline (\n) or tab (\t).

You can embed newlines or any of the following Escape sequences directly in your
double quoted strings −

Escape sequence Meaning

\\ Backslash

\' Single quote

\" Double quote

\a Alert or bell

\b Backspace

\f Form feed

\n Newline

\r Carriage return

\t Horizontal tab

\v Vertical tab

\0nn Creates Octal formatted numbers

\xnn Creates Hexideciamal formatted numbers

\cX Controls characters, x may be any character

\u Forces next character to uppercase

\l Forces next character to lowercase

\U Forces all following characters to uppercase

\L Forces all following characters to lowercase

\Q Backslash all following non-alphanumeric characters

\E End \U, \L, or \Q

Example
Let's see again how strings behave with single quotation and double quotation. Here
we will use string escapes mentioned in the above table and will make use of the
scalar variable to assign string values.

#!/usr/bin/perl

This is case of interpolation.
$str = "Welcome to \ntutorialspoint.com!";
print "$str\n";

This is case of non-interpolation.
$str = 'Welcome to \ntutorialspoint.com!';
print "$str\n";

Only W will become upper case.
$str = "\uwelcome to tutorialspoint.com!";
print "$str\n";

Whole line will become capital.

$str = "\UWelcome to tutorialspoint.com!";
print "$str\n";

A portion of line will become capital.
$str = "Welcome to \Ututorialspoint\E.com!";
print "$str\n";

Backsalash non alpha-numeric including spaces.
$str = "\QWelcome to tutorialspoint's family";
print "$str\n";

This will produce the following result −

Welcome to
tutorialspoint.com!
Welcome to \ntutorialspoint.com!
Welcome to tutorialspoint.com!
WELCOME TO TUTORIALSPOINT.COM!
Welcome to TUTORIALSPOINT.com!
Welcome\ to\ tutorialspoint\'s\ family

Variables are the reserved memory locations to store values. This means that when
you create a variable you reserve some space in memory.

Based on the data type of a variable, the interpreter allocates memory and decides
what can be stored in the reserved memory. Therefore, by assigning different data
types to variables, you can store integers, decimals, or strings in these variables.

We have learnt that Perl has the following three basic data types −

• Scalars
• Arrays
• Hashes

Accordingly, we are going to use three types of variables in Perl. A scalar variable
will precede by a dollar sign ($) and it can store either a number, a string, or a
reference. An array variable will precede by sign @ and it will store ordered lists of
scalars. Finaly, the Hash variable will precede by sign % and will be used to store
sets of key/value pairs.

Perl maintains every variable type in a separate namespace. So you can, without fear
of conflict, use the same name for a scalar variable, an array, or a hash. This means
that $foo and @foo are two different variables.

Creating Variables

Perl variables do not have to be explicitly declared to reserve memory space. The
declaration happens automatically when you assign a value to a variable. The equal
sign (=) is used to assign values to variables.

Keep a note that this is mandatory to declare a variable before we use it if we use use
strict statement in our program.

The operand to the left of the = operator is the name of the variable, and the operand
to the right of the = operator is the value stored in the variable. For example −

$age = 25; # An integer assignment
$name = "John Paul"; # A string
$salary = 1445.50; # A floating point

Here 25, "John Paul" and 1445.50 are the values assigned
to $age, $name and $salary variables, respectively. Shortly we will see how we can
assign values to arrays and hashes.

Scalar Variables

A scalar is a single unit of data. That data might be an integer number, floating point,
a character, a string, a paragraph, or an entire web page. Simply saying it could be
anything, but only a single thing.

Here is a simple example of using scalar variables −

#!/usr/bin/perl

$age = 25; # An integer assignment
$name = "John Paul"; # A string
$salary = 1445.50; # A floating point

print "Age = $age\n";
print "Name = $name\n";
print "Salary = $salary\n";

This will produce the following result −

Age = 25
Name = John Paul
Salary = 1445.5

Array Variables

An array is a variable that stores an ordered list of scalar values. Array variables are
preceded by an "at" (@) sign. To refer to a single element of an array, you will use
the dollar sign ($) with the variable name followed by the index of the element in
square brackets.

Here is a simple example of using array variables −

#!/usr/bin/perl

@ages = (25, 30, 40);
@names = ("John Paul", "Lisa", "Kumar");

print "\$ages[0] = $ages[0]\n";
print "\$ages[1] = $ages[1]\n";
print "\$ages[2] = $ages[2]\n";
print "\$names[0] = $names[0]\n";
print "\$names[1] = $names[1]\n";
print "\$names[2] = $names[2]\n";

Here we used escape sign (\) before the $ sign just to print it. Other Perl will
understand it as a variable and will print its value. When executed, this will produce
the following result −

$ages[0] = 25
$ages[1] = 30
$ages[2] = 40
$names[0] = John Paul
$names[1] = Lisa
$names[2] = Kumar

Hash Variables

A hash is a set of key/value pairs. Hash variables are preceded by a percent (%) sign.
To refer to a single element of a hash, you will use the hash variable name followed
by the "key" associated with the value in curly brackets.

Here is a simple example of using hash variables −

#!/usr/bin/perl

%data = ('John Paul', 45, 'Lisa', 30, 'Kumar', 40);

print "\$data{'John Paul'} = $data{'John Paul'}\n";
print "\$data{'Lisa'} = $data{'Lisa'}\n";

print "\$data{'Kumar'} = $data{'Kumar'}\n";

This will produce the following result −

$data{'John Paul'} = 45
$data{'Lisa'} = 30
$data{'Kumar'} = 40

Variable Context

Perl treats same variable differently based on Context, i.e., situation where a variable
is being used. Let's check the following example −

 Live Demo

#!/usr/bin/perl

@names = ('John Paul', 'Lisa', 'Kumar');

@copy = @names;
$size = @names;

print "Given names are : @copy\n";
print "Number of names are : $size\n";

This will produce the following result −

Given names are : John Paul Lisa Kumar
Number of names are : 3

Here @names is an array, which has been used in two different contexts. First we
copied it into anyother array, i.e., list, so it returned all the elements assuming that
context is list context. Next we used the same array and tried to store this array in a
scalar, so in this case it returned just the number of elements in this array assuming
that context is scalar context. Following table lists down the various contexts −

Sr.No. Context & Description

1 Scalar

Assignment to a scalar variable evaluates the right-hand side in a scalar
context.

2 List

Assignment to an array or a hash evaluates the right-hand side in a list
context.

http://tpcg.io/hHxTSR

3 Boolean

Boolean context is simply any place where an expression is being
evaluated to see whether it's true or false.

4 Void

This context not only doesn't care what the return value is, it doesn't even
want a return value.

5 Interpolative

This context only happens inside quotes, or things that work like quotes.

A scalar is a single unit of data. That data might be an integer number, floating point,
a character, a string, a paragraph, or an entire web page.

Here is a simple example of using scalar variables −

#!/usr/bin/perl

$age = 25; # An integer assignment
$name = "John Paul"; # A string
$salary = 1445.50; # A floating point

print "Age = $age\n";
print "Name = $name\n";
print "Salary = $salary\n";

This will produce the following result −

Age = 25
Name = John Paul
Salary = 1445.5

Numeric Scalars

A scalar is most often either a number or a string. Following example demonstrates
the usage of various types of numeric scalars −

#!/usr/bin/perl

$integer = 200;
$negative = -300;
$floating = 200.340;
$bigfloat = -1.2E-23;

377 octal, same as 255 decimal
$octal = 0377;

FF hex, also 255 decimal
$hexa = 0xff;

print "integer = $integer\n";
print "negative = $negative\n";
print "floating = $floating\n";
print "bigfloat = $bigfloat\n";
print "octal = $octal\n";
print "hexa = $hexa\n";

This will produce the following result −

integer = 200
negative = -300
floating = 200.34
bigfloat = -1.2e-23
octal = 255
hexa = 255

String Scalars

Following example demonstrates the usage of various types of string scalars. Notice
the difference between single quoted strings and double quoted strings −

#!/usr/bin/perl

$var = "This is string scalar!";
$quote = 'I m inside single quote - $var';
$double = "This is inside single quote - $var";

$escape = "This example of escape -\tHello, World!";

print "var = $var\n";
print "quote = $quote\n";
print "double = $double\n";
print "escape = $escape\n";

This will produce the following result −

var = This is string scalar!
quote = I m inside single quote - $var
double = This is inside single quote - This is string scalar!
escape = This example of escape - Hello, World

Scalar Operations

You will see a detail of various operators available in Perl in a separate chapter, but
here we are going to list down few numeric and string operations.

#!/usr/bin/perl

$str = "hello" . "world"; # Concatenates strings.
$num = 5 + 10; # adds two numbers.
$mul = 4 * 5; # multiplies two numbers.
$mix = $str . $num; # concatenates string and number.

print "str = $str\n";
print "num = $num\n";
print "mul = $mul\n";
print "mix = $mix\n";

This will produce the following result −

str = helloworld
num = 15
mul = 20
mix = helloworld15

Multiline Strings

If you want to introduce multiline strings into your programs, you can use the
standard single quotes as below −

#!/usr/bin/perl

$string = 'This is
a multiline
string';

print "$string\n";

This will produce the following result −

This is
a multiline
string

You can use "here" document syntax as well to store or print multilines as below −

#!/usr/bin/perl

print <<EOF;
This is
a multiline
string
EOF

This will also produce the same result −

This is
a multiline
string

V-Strings

A literal of the form v1.20.300.4000 is parsed as a string composed of characters
with the specified ordinals. This form is known as v-strings.

A v-string provides an alternative and more readable way to construct strings, rather
than use the somewhat less readable interpolation form "\x{1}\x{14}\x{12c}\x{fa0}".

They are any literal that begins with a v and is followed by one or more dot-separated
elements. For example −

#!/usr/bin/perl

$smile = v9786;
$foo = v102.111.111;
$martin = v77.97.114.116.105.110;

print "smile = $smile\n";
print "foo = $foo\n";
print "martin = $martin\n";

This will also produce the same result −

smile = ☺
foo = foo
martin = Martin
Wide character in print at main.pl line 7.

Special Literals

So far you must have a feeling about string scalars and its concatenation and
interpolation opration. So let me tell you about three special literals __FILE__,
__LINE__, and __PACKAGE__ represent the current filename, line number, and
package name at that point in your program.

They may be used only as separate tokens and will not be interpolated into strings.
Check the below example −

#!/usr/bin/perl

print "File name ". __FILE__ . "\n";
print "Line Number " . __LINE__ ."\n";
print "Package " . __PACKAGE__ ."\n";

they can not be interpolated

print "__FILE__ __LINE__ __PACKAGE__\n";

This will produce the following result −

File name hello.pl
Line Number 4
Package main
__FILE__ __LINE__ __PACKAGE__

An array is a variable that stores an ordered list of scalar values. Array variables are
preceded by an "at" (@) sign. To refer to a single element of an array, you will use
the dollar sign ($) with the variable name followed by the index of the element in
square brackets.

Here is a simple example of using the array variables −

#!/usr/bin/perl

@ages = (25, 30, 40);
@names = ("John Paul", "Lisa", "Kumar");

print "\$ages[0] = $ages[0]\n";
print "\$ages[1] = $ages[1]\n";
print "\$ages[2] = $ages[2]\n";
print "\$names[0] = $names[0]\n";
print "\$names[1] = $names[1]\n";
print "\$names[2] = $names[2]\n";

Here we have used the escape sign (\) before the $ sign just to print it. Other Perl will
understand it as a variable and will print its value. When executed, this will produce
the following result −

$ages[0] = 25
$ages[1] = 30
$ages[2] = 40
$names[0] = John Paul
$names[1] = Lisa
$names[2] = Kumar

In Perl, List and Array terms are often used as if they're interchangeable. But the list
is the data, and the array is the variable.

Array Creation

Array variables are prefixed with the @ sign and are populated using either
parentheses or the qw operator. For example −

@array = (1, 2, 'Hello');
@array = qw/This is an array/;

The second line uses the qw// operator, which returns a list of strings, separating the
delimited string by white space. In this example, this leads to a four-element array;
the first element is 'this' and last (fourth) is 'array'. This means that you can use
different lines as follows −

@days = qw/Monday
Tuesday
...
Sunday/;

You can also populate an array by assigning each value individually as follows −

$array[0] = 'Monday';
...
$array[6] = 'Sunday';

Accessing Array Elements

When accessing individual elements from an array, you must prefix the variable with
a dollar sign ($) and then append the element index within the square brackets after
the name of the variable. For example −

#!/usr/bin/perl

@days = qw/Mon Tue Wed Thu Fri Sat Sun/;

print "$days[0]\n";
print "$days[1]\n";
print "$days[2]\n";
print "$days[6]\n";
print "$days[-1]\n";
print "$days[-7]\n";

This will produce the following result −

Mon
Tue
Wed
Sun
Sun
Mon

Array indices start from zero, so to access the first element you need to give 0 as
indices. You can also give a negative index, in which case you select the element from
the end, rather than the beginning, of the array. This means the following −

print $days[-1]; # outputs Sun
print $days[-7]; # outputs Mon

Sequential Number Arrays

Perl offers a shortcut for sequential numbers and letters. Rather than typing out each
element when counting to 100 for example, we can do something like as follows −

 Live Demo

#!/usr/bin/perl

@var_10 = (1..10);
@var_20 = (10..20);
@var_abc = (a..z);

print "@var_10\n"; # Prints number from 1 to 10
print "@var_20\n"; # Prints number from 10 to 20
print "@var_abc\n"; # Prints number from a to z

Here double dot (..) is called range operator. This will produce the following result −

1 2 3 4 5 6 7 8 9 10
10 11 12 13 14 15 16 17 18 19 20
a b c d e f g h i j k l m n o p q r s t u v w x y z

Array Size

The size of an array can be determined using the scalar context on the array - the
returned value will be the number of elements in the array −

@array = (1,2,3);
print "Size: ",scalar @array,"\n";

The value returned will always be the physical size of the array, not the number of
valid elements. You can demonstrate this, and the difference between scalar @array
and $#array, using this fragment is as follows −

#!/usr/bin/perl

@array = (1,2,3);
$array[50] = 4;

$size = @array;
$max_index = $#array;

print "Size: $size\n";
print "Max Index: $max_index\n";

This will produce the following result −

Size: 51
Max Index: 50

http://tpcg.io/6SSbIf

There are only four elements in the array that contains information, but the array is
51 elements long, with a highest index of 50.

Adding and Removing Elements in Array

Perl provides a number of useful functions to add and remove elements in an array.
You may have a question what is a function? So far you have used print function to
print various values. Similarly there are various other functions or sometime called
sub-routines, which can be used for various other functionalities.

Sr.No. Types & Description

1 push @ARRAY, LIST

Pushes the values of the list onto the end of the array.

2 pop @ARRAY

Pops off and returns the last value of the array.

3 shift @ARRAY

Shifts the first value of the array off and returns it, shortening the array by
1 and moving everything down.

4 unshift @ARRAY, LIST

Prepends list to the front of the array, and returns the number of elements
in the new array.

#!/usr/bin/perl

create a simple array
@coins = ("Quarter","Dime","Nickel");
print "1. \@coins = @coins\n";

add one element at the end of the array
push(@coins, "Penny");
print "2. \@coins = @coins\n";

add one element at the beginning of the array
unshift(@coins, "Dollar");
print "3. \@coins = @coins\n";

remove one element from the last of the array.
pop(@coins);
print "4. \@coins = @coins\n";

remove one element from the beginning of the array.
shift(@coins);
print "5. \@coins = @coins\n";

This will produce the following result −

1. @coins = Quarter Dime Nickel
2. @coins = Quarter Dime Nickel Penny
3. @coins = Dollar Quarter Dime Nickel Penny
4. @coins = Dollar Quarter Dime Nickel
5. @coins = Quarter Dime Nickel

Slicing Array Elements

You can also extract a "slice" from an array - that is, you can select more than one
item from an array in order to produce another array.

#!/usr/bin/perl

@days = qw/Mon Tue Wed Thu Fri Sat Sun/;

@weekdays = @days[3,4,5];

print "@weekdays\n";

This will produce the following result −

Thu Fri Sat

The specification for a slice must have a list of valid indices, either positive or
negative, each separated by a comma. For speed, you can also use the .. range
operator −

#!/usr/bin/perl

@days = qw/Mon Tue Wed Thu Fri Sat Sun/;

@weekdays = @days[3..5];

print "@weekdays\n";

This will produce the following result −

Thu Fri Sat

Replacing Array Elements

Now we are going to introduce one more function called splice(), which has the
following syntax −

splice @ARRAY, OFFSET [, LENGTH [, LIST]]

This function will remove the elements of @ARRAY designated by OFFSET and
LENGTH, and replaces them with LIST, if specified. Finally, it returns the elements
removed from the array. Following is the example −

#!/usr/bin/perl

@nums = (1..20);
print "Before - @nums\n";

splice(@nums, 5, 5, 21..25);
print "After - @nums\n";

This will produce the following result −

Before - 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
After - 1 2 3 4 5 21 22 23 24 25 11 12 13 14 15 16 17 18 19 20

Here, the actual replacement begins with the 6th number after that five elements are
then replaced from 6 to 10 with the numbers 21, 22, 23, 24 and 25.

Transform Strings to Arrays

Let's look into one more function called split(), which has the following syntax −

split [PATTERN [, EXPR [, LIMIT]]]

This function splits a string into an array of strings, and returns it. If LIMIT is specified,
splits into at most that number of fields. If PATTERN is omitted, splits on whitespace.
Following is the example −

#!/usr/bin/perl

define Strings
$var_string = "Rain-Drops-On-Roses-And-Whiskers-On-Kittens";
$var_names = "Larry,David,Roger,Ken,Michael,Tom";

transform above strings into arrays.
@string = split('-', $var_string);
@names = split(',', $var_names);

print "$string[3]\n"; # This will print Roses
print "$names[4]\n"; # This will print Michael

This will produce the following result −

Roses
Michael

Transform Arrays to Strings

We can use the join() function to rejoin the array elements and form one long scalar
string. This function has the following syntax −

join EXPR, LIST

This function joins the separate strings of LIST into a single string with fields
separated by the value of EXPR, and returns the string. Following is the example −

#!/usr/bin/perl

define Strings
$var_string = "Rain-Drops-On-Roses-And-Whiskers-On-Kittens";
$var_names = "Larry,David,Roger,Ken,Michael,Tom";

transform above strings into arrays.
@string = split('-', $var_string);
@names = split(',', $var_names);

$string1 = join('-', @string);
$string2 = join(',', @names);

print "$string1\n";
print "$string2\n";

This will produce the following result −

Rain-Drops-On-Roses-And-Whiskers-On-Kittens
Larry,David,Roger,Ken,Michael,Tom

Sorting Arrays

The sort() function sorts each element of an array according to the ASCII Numeric
standards. This function has the following syntax −

sort [SUBROUTINE] LIST

This function sorts the LIST and returns the sorted array value. If SUBROUTINE is
specified then specified logic inside the SUBTROUTINE is applied while sorting the
elements.

#!/usr/bin/perl

define an array
@foods = qw(pizza steak chicken burgers);
print "Before: @foods\n";

sort this array
@foods = sort(@foods);

print "After: @foods\n";

This will produce the following result −

Before: pizza steak chicken burgers
After: burgers chicken pizza steak

Please note that sorting is performed based on ASCII Numeric value of the words. So
the best option is to first transform every element of the array into lowercase letters
and then perform the sort function.

The $[Special Variable

So far you have seen simple variable we defined in our programs and used them to
store and print scalar and array values. Perl provides numerous special variables,
which have their predefined meaning.

We have a special variable, which is written as $[. This special variable is a scalar
containing the first index of all arrays. Because Perl arrays have zero-based indexing,
$[will almost always be 0. But if you set $[to 1 then all your arrays will use on-
based indexing. It is recommended not to use any other indexing other than zero.
However, let's take one example to show the usage of $[variable −

 Live Demo

#!/usr/bin/perl

define an array
@foods = qw(pizza steak chicken burgers);
print "Foods: @foods\n";

Let's reset first index of all the arrays.
$[= 1;

print "Food at \@foods[1]: $foods[1]\n";
print "Food at \@foods[2]: $foods[2]\n";

This will produce the following result −

Foods: pizza steak chicken burgers
Food at @foods[1]: pizza
Food at @foods[2]: steak

Merging Arrays

Because an array is just a comma-separated sequence of values, you can combine
them together as shown below −

#!/usr/bin/perl

http://tpcg.io/rgNECL

@numbers = (1,3,(4,5,6));

print "numbers = @numbers\n";

This will produce the following result −

numbers = 1 3 4 5 6

The embedded arrays just become a part of the main array as shown below −

#!/usr/bin/perl

@odd = (1,3,5);
@even = (2, 4, 6);

@numbers = (@odd, @even);

print "numbers = @numbers\n";

This will produce the following result −

numbers = 1 3 5 2 4 6

Selecting Elements from Lists

The list notation is identical to that for arrays. You can extract an element from an
array by appending square brackets to the list and giving one or more indices −

#!/usr/bin/perl

$var = (5,4,3,2,1)[4];

print "value of var = $var\n"

This will produce the following result −

value of var = 1

Similarly, we can extract slices, although without the requirement for a leading @
character −

#!/usr/bin/perl

@list = (5,4,3,2,1)[1..3];

print "Value of list = @list\n";

This will produce the following result −

Value of list = 4 3 2

A hash is a set of key/value pairs. Hash variables are preceded by a percent (%) sign.
To refer to a single element of a hash, you will use the hash variable name preceded
by a "$" sign and followed by the "key" associated with the value in curly brackets..

Here is a simple example of using the hash variables −

#!/usr/bin/perl

%data = ('John Paul', 45, 'Lisa', 30, 'Kumar', 40);

print "\$data{'John Paul'} = $data{'John Paul'}\n";
print "\$data{'Lisa'} = $data{'Lisa'}\n";
print "\$data{'Kumar'} = $data{'Kumar'}\n";

This will produce the following result −

$data{'John Paul'} = 45
$data{'Lisa'} = 30
$data{'Kumar'} = 40

Creating Hashes

Hashes are created in one of the two following ways. In the first method, you assign
a value to a named key on a one-by-one basis −

$data{'John Paul'} = 45;
$data{'Lisa'} = 30;
$data{'Kumar'} = 40;

In the second case, you use a list, which is converted by taking individual pairs from
the list: the first element of the pair is used as the key, and the second, as the value.
For example −

%data = ('John Paul', 45, 'Lisa', 30, 'Kumar', 40);

For clarity, you can use => as an alias for , to indicate the key/value pairs as follows
−

%data = ('John Paul' => 45, 'Lisa' => 30, 'Kumar' => 40);

Here is one more variant of the above form, have a look at it, here all the keys have
been preceded by hyphen (-) and no quotation is required around them −

%data = (-JohnPaul => 45, -Lisa => 30, -Kumar => 40);

But it is important to note that there is a single word, i.e., without spaces keys have
been used in this form of hash formation and if you build-up your hash this way then
keys will be accessed using hyphen only as shown below.

$val = %data{-JohnPaul}
$val = %data{-Lisa}

Accessing Hash Elements

When accessing individual elements from a hash, you must prefix the variable with
a dollar sign ($) and then append the element key within curly brackets after the
name of the variable. For example −

#!/usr/bin/perl

%data = ('John Paul' => 45, 'Lisa' => 30, 'Kumar' => 40);

print "$data{'John Paul'}\n";
print "$data{'Lisa'}\n";
print "$data{'Kumar'}\n";

This will produce the following result −

45
30
40

Extracting Slices

You can extract slices of a hash just as you can extract slices from an array. You will
need to use @ prefix for the variable to store the returned value because they will be
a list of values −

#!/uer/bin/perl

%data = (-JohnPaul => 45, -Lisa => 30, -Kumar => 40);

@array = @data{-JohnPaul, -Lisa};

print "Array : @array\n";

This will produce the following result −

Array : 45 30

Extracting Keys and Values

You can get a list of all of the keys from a hash by using keys function, which has the
following syntax −

keys %HASH

This function returns an array of all the keys of the named hash. Following is the
example −

#!/usr/bin/perl

%data = ('John Paul' => 45, 'Lisa' => 30, 'Kumar' => 40);

@names = keys %data;

print "$names[0]\n";
print "$names[1]\n";
print "$names[2]\n";

This will produce the following result −

Lisa
John Paul
Kumar

Similarly, you can use values function to get a list of all the values. This function has
the following syntax −

values %HASH

This function returns a normal array consisting of all the values of the named hash.
Following is the example −

#!/usr/bin/perl

%data = ('John Paul' => 45, 'Lisa' => 30, 'Kumar' => 40);

@ages = values %data;

print "$ages[0]\n";
print "$ages[1]\n";
print "$ages[2]\n";

This will produce the following result −

30
45
40

Checking for Existence

If you try to access a key/value pair from a hash that doesn't exist, you'll normally get
the undefined value, and if you have warnings switched on, then you'll get a warning
generated at run time. You can get around this by using the exists function, which
returns true if the named key exists, irrespective of what its value might be −

#!/usr/bin/perl

%data = ('John Paul' => 45, 'Lisa' => 30, 'Kumar' => 40);

if(exists($data{'Lisa'})) {

 print "Lisa is $data{'Lisa'} years old\n";
} else {
 print "I don't know age of Lisa\n";
}

Here we have introduced the IF...ELSE statement, which we will study in a separate
chapter. For now you just assume that if(condition) part will be executed only when
the given condition is true otherwise else part will be executed. So when we execute
the above program, it produces the following result because here the given
condition exists($data{'Lisa'} returns true −

Lisa is 30 years old

Getting Hash Size

You can get the size - that is, the number of elements from a hash by using the scalar
context on either keys or values. Simply saying first you have to get an array of either
the keys or values and then you can get the size of array as follows −

#!/usr/bin/perl

%data = ('John Paul' => 45, 'Lisa' => 30, 'Kumar' => 40);

@keys = keys %data;
$size = @keys;
print "1 - Hash size: is $size\n";

@values = values %data;
$size = @values;
print "2 - Hash size: is $size\n";

This will produce the following result −

1 - Hash size: is 3
2 - Hash size: is 3

Add and Remove Elements in Hashes

Adding a new key/value pair can be done with one line of code using simple
assignment operator. But to remove an element from the hash you need to
use delete function as shown below in the example −

#!/usr/bin/perl

%data = ('John Paul' => 45, 'Lisa' => 30, 'Kumar' => 40);
@keys = keys %data;
$size = @keys;
print "1 - Hash size: is $size\n";

adding an element to the hash;
$data{'Ali'} = 55;
@keys = keys %data;
$size = @keys;
print "2 - Hash size: is $size\n";

delete the same element from the hash;
delete $data{'Ali'};
@keys = keys %data;
$size = @keys;
print "3 - Hash size: is $size\n";

This will produce the following result −

1 - Hash size: is 3
2 - Hash size: is 4
3 - Hash size: is 3

IF-ELSE

Perl conditional statements helps in the decision making, which require that the
programmer specifies one or more conditions to be evaluated or tested by the
program, along with a statement or statements to be executed if the condition is
determined to be true, and optionally, other statements to be executed if the
condition is determined to be false.

Following is the general from of a typical decision making structure found in most of
the programming languages −

The number 0, the strings '0' and "" , the empty list () , and undef are all false in a
boolean context and all other values are true. Negation of a true value
by ! or not returns a special false value.

Perl programming language provides the following types of conditional statements.

Sr.No. Statement & Description

1 if statement

An if statement consists of a boolean expression followed by one or more
statements.

2 if...else statement

An if statement can be followed by an optional else statement.

3 if...elsif...else statement

An if statement can be followed by an optional elsif statement and then
by an optional else statement.

4 unless statement

An unless statement consists of a boolean expression followed by one or
more statements.

5 unless...else statement

An unless statement can be followed by an optional else statement.

6 unless...elsif..else statement

An unless statement can be followed by an optional elsif statement and
then by an optional else statement.

7 switch statement

With the latest versions of Perl, you can make use of
the switch statement. which allows a simple way of comparing a variable
value against various conditions.

https://www.tutorialspoint.com/perl/perl_if_statement.htm
https://www.tutorialspoint.com/perl/perl_if_else_statement.htm
https://www.tutorialspoint.com/perl/perl_if_elsif_statement.htm
https://www.tutorialspoint.com/perl/perl_unless_statement.htm
https://www.tutorialspoint.com/perl/perl_unless_else_statement.htm
https://www.tutorialspoint.com/perl/perl_unless_elsif_statement.htm
https://www.tutorialspoint.com/perl/perl_switch_statement.htm

The ? : Operator

Let's check the conditional operator ? :which can be used to
replace if...else statements. It has the following general form −

Exp1 ? Exp2 : Exp3;

Where Exp1, Exp2, and Exp3 are expressions. Notice the use and placement of the
colon.

The value of a ? expression is determined like this: Exp1 is evaluated. If it is true, then
Exp2 is evaluated and becomes the value of the entire ? expression. If Exp1 is false,
then Exp3 is evaluated and its value becomes the value of the expression. Below is
a simple example making use of this operator −

#!/usr/local/bin/perl

$name = "Ali";
$age = 10;

$status = ($age > 60)? "A senior citizen" : "Not a senior citizen";

print "$name is - $status\n";

This will produce the following result −

Ali is - Not a senior citizen

LOOPS

There may be a situation when you need to execute a block of code several number
of times. In general, statements are executed sequentially: The first statement in a
function is executed first, followed by the second, and so on.

Programming languages provide various control structures that allow for more
complicated execution paths.

A loop statement allows us to execute a statement or group of statements multiple
times and following is the general form of a loop statement in most of the
programming languages −

Perl programming language provides the following types of loop to handle the
looping requirements.

Sr.No. Loop Type & Description

1 while loop

Repeats a statement or group of statements while a given condition is
true. It tests the condition before executing the loop body.

2 until loop

Repeats a statement or group of statements until a given condition
becomes true. It tests the condition before executing the loop body.

3 for loop

Executes a sequence of statements multiple times and abbreviates the
code that manages the loop variable.

4 foreach loop

The foreach loop iterates over a normal list value and sets the variable
VAR to be each element of the list in turn.

5 do...while loop

https://www.tutorialspoint.com/perl/perl_while_loop.htm
https://www.tutorialspoint.com/perl/perl_until_loop.htm
https://www.tutorialspoint.com/perl/perl_for_loop.htm
https://www.tutorialspoint.com/perl/perl_foreach_loop.htm
https://www.tutorialspoint.com/perl/perl_do_while_loop.htm

Like a while statement, except that it tests the condition at the end of the
loop body

6 nested loops

You can use one or more loop inside any another while, for or do..while
loop.

Loop Control Statements

Loop control statements change the execution from its normal sequence. When
execution leaves a scope, all automatic objects that were created in that scope are
destroyed.

Perl supports the following control statements. Click the following links to check
their detail.

Sr.No. Control Statement & Description

1 next statement

Causes the loop to skip the remainder of its body and immediately retest
its condition prior to reiterating.

2 last statement

Terminates the loop statement and transfers execution to the statement
immediately following the loop.

3 continue statement

A continue BLOCK, it is always executed just before the conditional is
about to be evaluated again.

4 redo statement

The redo command restarts the loop block without evaluating the
conditional again. The continue block, if any, is not executed.

5 goto statement

https://www.tutorialspoint.com/perl/perl_nested_loops.htm
https://www.tutorialspoint.com/perl/perl_next_statement.htm
https://www.tutorialspoint.com/perl/perl_last_statement.htm
https://www.tutorialspoint.com/perl/perl_continue_statement.htm
https://www.tutorialspoint.com/perl/perl_redo_statement.htm
https://www.tutorialspoint.com/perl/perl_goto_statement.htm

Perl supports a goto command with three forms: goto label, goto expr, and
goto &name.

The Infinite Loop

A loop becomes infinite loop if a condition never becomes false. The for loop is
traditionally used for this purpose. Since none of the three expressions that form
the for loop are required, you can make an endless loop by leaving the conditional
expression empty.

#!/usr/local/bin/perl

for(; ;) {
 printf "This loop will run forever.\n";
}

You can terminate the above infinite loop by pressing the Ctrl + C keys.

When the conditional expression is absent, it is assumed to be true. You may have an
initialization and increment expression, but as a programmer more commonly use the
for (;;) construct to signify an infinite loop.

What is an Operator?

Simple answer can be given using the expression 4 + 5 is equal to 9. Here 4 and 5
are called operands and + is called operator. Perl language supports many operator
types, but following is a list of important and most frequently used operators −

• Arithmetic Operators
• Equality Operators
• Logical Operators
• Assignment Operators
• Bitwise Operators
• Logical Operators
• Quote-like Operators
• Miscellaneous Operators

Lets have a look at all the operators one by one.

Perl Arithmetic Operators

Assume variable $a holds 10 and variable $b holds 20, then following are the Perl
arithmatic operators −

Sr.No. Operator & Description

1 + (Addition)

Adds values on either side of the operator

Example − $a + $b will give 30

2 - (Subtraction)

Subtracts right hand operand from left hand operand

Example − $a - $b will give -10

3 * (Multiplication)

Multiplies values on either side of the operator

Example − $a * $b will give 200

4 / (Division)

Divides left hand operand by right hand operand

Example − $b / $a will give 2

5 % (Modulus)

Divides left hand operand by right hand operand and returns remainder

Example − $b % $a will give 0

6 ** (Exponent)

Performs exponential (power) calculation on operators

Example − $a**$b will give 10 to the power 20

Example

Try the following example to understand all the arithmatic operators available in
Perl. Copy and paste the following Perl program in test.pl file and execute this
program.

#!/usr/local/bin/perl

$a = 21;
$b = 10;

print "Value of \$a = $a and value of \$b = $b\n";

$c = $a + $b;
print 'Value of $a + $b = ' . $c . "\n";

$c = $a - $b;
print 'Value of $a - $b = ' . $c . "\n";

$c = $a * $b;
print 'Value of $a * $b = ' . $c . "\n";

$c = $a / $b;
print 'Value of $a / $b = ' . $c . "\n";

$c = $a % $b;
print 'Value of $a % $b = ' . $c. "\n";

$a = 2;
$b = 4;
$c = $a ** $b;
print 'Value of $a ** $b = ' . $c . "\n";

When the above code is executed, it produces the following result −

Value of $a = 21 and value of $b = 10
Value of $a + $b = 31
Value of $a - $b = 11
Value of $a * $b = 210
Value of $a / $b = 2.1
Value of $a % $b = 1
Value of $a ** $b = 16

Perl Equality Operators

These are also called relational operators. Assume variable $a holds 10 and variable
$b holds 20 then, lets check the following numeric equality operators −

Sr.No. Operator & Description

1 == (equal to)

Checks if the value of two operands are equal or not, if yes then condition
becomes true.

Example − ($a == $b) is not true.

2 != (not equal to)

Checks if the value of two operands are equal or not, if values are not equal
then condition becomes true.

Example − ($a != $b) is true.

3 <=>

Checks if the value of two operands are equal or not, and returns -1, 0, or
1 depending on whether the left argument is numerically less than, equal
to, or greater than the right argument.

Example − ($a <=> $b) returns -1.

4 > (greater than)

Checks if the value of left operand is greater than the value of right
operand, if yes then condition becomes true.

Example − ($a > $b) is not true.

5 < (less than)

Checks if the value of left operand is less than the value of right operand,
if yes then condition becomes true.

Example − ($a < $b) is true.

6 >= (greater than or equal to)

Checks if the value of left operand is greater than or equal to the value of
right operand, if yes then condition becomes true.

Example − ($a >= $b) is not true.

7 <= (less than or equal to)

Checks if the value of left operand is less than or equal to the value of right
operand, if yes then condition becomes true.

Example − ($a <= $b) is true.

Example

Try the following example to understand all the numeric equality operators available
in Perl. Copy and paste the following Perl program in test.pl file and execute this
program.

#!/usr/local/bin/perl

$a = 21;
$b = 10;

print "Value of \$a = $a and value of \$b = $b\n";

if($a == $b) {
 print "$a == \$b is true\n";
} else {
 print "\$a == \$b is not true\n";
}

if($a != $b) {
 print "\$a != \$b is true\n";
} else {
 print "\$a != \$b is not true\n";
}

$c = $a <=> $b;
print "\$a <=> \$b returns $c\n";

if($a > $b) {
 print "\$a > \$b is true\n";
} else {
 print "\$a > \$b is not true\n";
}

if($a >= $b) {
 print "\$a >= \$b is true\n";
} else {
 print "\$a >= \$b is not true\n";
}

if($a < $b) {
 print "\$a < \$b is true\n";
} else {
 print "\$a < \$b is not true\n";
}

if($a <= $b) {
 print "\$a <= \$b is true\n";
} else {
 print "\$a <= \$b is not true\n";
}

When the above code is executed, it produces the following result −

Value of $a = 21 and value of $b = 10
$a == $b is not true
$a != $b is true
$a <=> $b returns 1
$a > $b is true
$a >= $b is true
$a < $b is not true
$a <= $b is not true

Below is a list of equity operators. Assume variable $a holds "abc" and variable $b
holds "xyz" then, lets check the following string equality operators −

Sr.No. Operator & Description

1 lt

Returns true if the left argument is stringwise less than the right argument.

Example − ($a lt $b) is true.

2 gt

Returns true if the left argument is stringwise greater than the right
argument.

Example − ($a gt $b) is false.

3 le

Returns true if the left argument is stringwise less than or equal to the
right argument.

Example − ($a le $b) is true.

4 ge

Returns true if the left argument is stringwise greater than or equal to the
right argument.

Example − ($a ge $b) is false.

5 eq

Returns true if the left argument is stringwise equal to the right argument.

Example − ($a eq $b) is false.

6 ne

Returns true if the left argument is stringwise not equal to the right
argument.

Example − ($a ne $b) is true.

7 cmp

Returns -1, 0, or 1 depending on whether the left argument is stringwise
less than, equal to, or greater than the right argument.

Example − ($a cmp $b) is -1.

Example

Try the following example to understand all the string equality operators available
in Perl. Copy and paste the following Perl program in test.pl file and execute this
program.

#!/usr/local/bin/perl

$a = "abc";
$b = "xyz";

print "Value of \$a = $a and value of \$b = $b\n";

if($a lt $b) {
 print "$a lt \$b is true\n";
} else {
 print "\$a lt \$b is not true\n";
}

if($a gt $b) {
 print "\$a gt \$b is true\n";
} else {
 print "\$a gt \$b is not true\n";
}

if($a le $b) {
 print "\$a le \$b is true\n";
} else {
 print "\$a le \$b is not true\n";
}

if($a ge $b) {
 print "\$a ge \$b is true\n";
} else {
 print "\$a ge \$b is not true\n";
}

if($a ne $b) {
 print "\$a ne \$b is true\n";
} else {
 print "\$a ne \$b is not true\n";
}

$c = $a cmp $b;
print "\$a cmp \$b returns $c\n";

When the above code is executed, it produces the following result −

Value of $a = abc and value of $b = xyz
abc lt $b is true
$a gt $b is not true
$a le $b is true
$a ge $b is not true
$a ne $b is true
$a cmp $b returns -1

Perl Assignment Operators

Assume variable $a holds 10 and variable $b holds 20, then below are the
assignment operators available in Perl and their usage −

Sr.No. Operator & Description

1 =

Simple assignment operator, Assigns values from right side operands to
left side operand

Example − $c = $a + $b will assigned value of $a + $b into $c

2 +=

Add AND assignment operator, It adds right operand to the left operand
and assign the result to left operand

Example − $c += $a is equivalent to $c = $c + $a

3 -=

Subtract AND assignment operator, It subtracts right operand from the
left operand and assign the result to left operand

Example − $c -= $a is equivalent to $c = $c - $a

4 *=

Multiply AND assignment operator, It multiplies right operand with the
left operand and assign the result to left operand

Example − $c *= $a is equivalent to $c = $c * $a

5 /=

Divide AND assignment operator, It divides left operand with the right
operand and assign the result to left operand

Example − $c /= $a is equivalent to $c = $c / $a

6 %=

Modulus AND assignment operator, It takes modulus using two operands
and assign the result to left operand

Example − $c %= $a is equivalent to $c = $c % a

7 **=

Exponent AND assignment operator, Performs exponential (power)
calculation on operators and assign value to the left operand

Example − $c **= $a is equivalent to $c = $c ** $a

Example

Try the following example to understand all the assignment operators available in
Perl. Copy and paste the following Perl program in test.pl file and execute this
program.

#!/usr/local/bin/perl

$a = 10;
$b = 20;

print "Value of \$a = $a and value of \$b = $b\n";

$c = $a + $b;
print "After assignment value of \$c = $c\n";

$c += $a;
print "Value of \$c = $c after statement \$c += \$a\n";

$c -= $a;
print "Value of \$c = $c after statement \$c -= \$a\n";

$c *= $a;
print "Value of \$c = $c after statement \$c *= \$a\n";

$c /= $a;
print "Value of \$c = $c after statement \$c /= \$a\n";

$c %= $a;
print "Value of \$c = $c after statement \$c %= \$a\n";

$c = 2;
$a = 4;

print "Value of \$a = $a and value of \$c = $c\n";
$c **= $a;
print "Value of \$c = $c after statement \$c **= \$a\n";

When the above code is executed, it produces the following result −

Value of $a = 10 and value of $b = 20
After assignment value of $c = 30
Value of $c = 40 after statement $c += $a
Value of $c = 30 after statement $c -= $a
Value of $c = 300 after statement $c *= $a
Value of $c = 30 after statement $c /= $a
Value of $c = 0 after statement $c %= $a
Value of $a = 4 and value of $c = 2
Value of $c = 16 after statement $c **= $a

Perl Bitwise Operators

Bitwise operator works on bits and perform bit by bit operation. Assume if $a = 60;
and $b = 13; Now in binary format they will be as follows −

$a = 0011 1100

$b = 0000 1101

$a&$b = 0000 1100

$a|$b = 0011 1101

$a^$b = 0011 0001

~$a = 1100 0011

There are following Bitwise operators supported by Perl language, assume if $a =
60; and $b = 13

Sr.No. Operator & Description

1 &

Binary AND Operator copies a bit to the result if it exists in both operands.

Example − ($a & $b) will give 12 which is 0000 1100

2 |

Binary OR Operator copies a bit if it exists in eather operand.

Example − ($a | $b) will give 61 which is 0011 1101

3 ^

Binary XOR Operator copies the bit if it is set in one operand but not both.

Example − ($a ^ $b) will give 49 which is 0011 0001

4 ~

Binary Ones Complement Operator is unary and has the efect of 'flipping'
bits.

Example − (~$a) will give -61 which is 1100 0011 in 2's complement
form due to a signed binary number.

5 <<

Binary Left Shift Operator. The left operands value is moved left by the
number of bits specified by the right operand.

Example − $a << 2 will give 240 which is 1111 0000

6 >>

Binary Right Shift Operator. The left operands value is moved right by the
number of bits specified by the right operand.

Example − $a >> 2 will give 15 which is 0000 1111

Example

Try the following example to understand all the bitwise operators available in Perl.
Copy and paste the following Perl program in test.pl file and execute this program.

#!/usr/local/bin/perl

use integer;

$a = 60;
$b = 13;

print "Value of \$a = $a and value of \$b = $b\n";

$c = $a & $b;
print "Value of \$a & \$b = $c\n";

$c = $a | $b;
print "Value of \$a | \$b = $c\n";

$c = $a ^ $b;
print "Value of \$a ^ \$b = $c\n";

$c = ~$a;
print "Value of ~\$a = $c\n";

$c = $a << 2;
print "Value of \$a << 2 = $c\n";

$c = $a >> 2;
print "Value of \$a >> 2 = $c\n";

When the above code is executed, it produces the following result −

Value of $a = 60 and value of $b = 13
Value of $a & $b = 12
Value of $a | $b = 61
Value of $a ^ $b = 49
Value of ~$a = -61
Value of $a << 2 = 240
Value of $a >> 2 = 15

Perl Logical Operators

There are following logical operators supported by Perl language. Assume variable
$a holds true and variable $b holds false then −

Sr.No. Operator & Description

1 and

Called Logical AND operator. If both the operands are true then then
condition becomes true.

Example − ($a and $b) is false.

2 &&

C-style Logical AND operator copies a bit to the result if it exists in both
operands.

Example − ($a && $b) is false.

3 or

Called Logical OR Operator. If any of the two operands are non zero then
then condition becomes true.

Example − ($a or $b) is true.

4 ||

C-style Logical OR operator copies a bit if it exists in eather operand.

Example − ($a || $b) is true.

5 not

Called Logical NOT Operator. Use to reverses the logical state of its
operand. If a condition is true then Logical NOT operator will make false.

Example − not($a and $b) is true.

Example

Try the following example to understand all the logical operators available in Perl.
Copy and paste the following Perl program in test.pl file and execute this program.

#!/usr/local/bin/perl

$a = true;
$b = false;

print "Value of \$a = $a and value of \$b = $b\n";

$c = ($a and $b);
print "Value of \$a and \$b = $c\n";

$c = ($a && $b);
print "Value of \$a && \$b = $c\n";

$c = ($a or $b);

print "Value of \$a or \$b = $c\n";

$c = ($a || $b);
print "Value of \$a || \$b = $c\n";

$a = 0;
$c = not($a);
print "Value of not(\$a)= $c\n";

When the above code is executed, it produces the following result −

Value of $a = true and value of $b = false
Value of $a and $b = false
Value of $a && $b = false
Value of $a or $b = true
Value of $a || $b = true
Value of not($a)= 1

Quote-like Operators

There are following Quote-like operators supported by Perl language. In the
following table, a {} represents any pair of delimiters you choose.

Sr.No. Operator & Description

1 q{ }

Encloses a string with-in single quotes

Example − q{abcd} gives 'abcd'

2 qq{ }

Encloses a string with-in double quotes

Example − qq{abcd} gives "abcd"

3 qx{ }

Encloses a string with-in invert quotes

Example − qx{abcd} gives `abcd`

Example

Try the following example to understand all the quote-like operators available in
Perl. Copy and paste the following Perl program in test.pl file and execute this
program.

#!/usr/local/bin/perl

$a = 10;

$b = q{a = $a};
print "Value of q{a = \$a} = $b\n";

$b = qq{a = $a};
print "Value of qq{a = \$a} = $b\n";

unix command execution
$t = qx{date};
print "Value of qx{date} = $t\n";

When the above code is executed, it produces the following result −

Value of q{a = $a} = a = $a
Value of qq{a = $a} = a = 10
Value of qx{date} = Thu Feb 14 08:13:17 MST 2013

Miscellaneous Operators

There are following miscellaneous operators supported by Perl language. Assume
variable a holds 10 and variable b holds 20 then −

Sr.No. Operator & Description

1 .

Binary operator dot (.) concatenates two strings.

Example − If $a = "abc", $b = "def" then $a.$b will give "abcdef"

2 x

The repetition operator x returns a string consisting of the left operand
repeated the number of times specified by the right operand.

Example − ('-' x 3) will give ---.

3 ..

The range operator .. returns a list of values counting (up by ones) from
the left value to the right value

Example − (2..5) will give (2, 3, 4, 5)

4 ++

Auto Increment operator increases integer value by one

Example − $a++ will give 11

5 --

Auto Decrement operator decreases integer value by one

Example − $a-- will give 9

6 ->

The arrow operator is mostly used in dereferencing a method or variable
from an object or a class name

Example − $obj->$a is an example to access variable $a from object $obj.

Example

Try the following example to understand all the miscellaneous operators available
in Perl. Copy and paste the following Perl program in test.pl file and execute this
program.

 Live Demo

#!/usr/local/bin/perl

$a = "abc";
$b = "def";

print "Value of \$a = $a and value of \$b = $b\n";

http://tpcg.io/ksXmvY

$c = $a . $b;
print "Value of \$a . \$b = $c\n";

$c = "-" x 3;
print "Value of \"-\" x 3 = $c\n";

@c = (2..5);
print "Value of (2..5) = @c\n";

$a = 10;
$b = 15;
print "Value of \$a = $a and value of \$b = $b\n";

$a++;
$c = $a ;
print "Value of \$a after \$a++ = $c\n";

$b--;
$c = $b ;
print "Value of \$b after \$b-- = $c\n";

When the above code is executed, it produces the following result −

Value of $a = abc and value of $b = def
Value of $a . $b = abcdef
Value of "-" x 3 = ---
Value of (2..5) = 2 3 4 5
Value of $a = 10 and value of $b = 15
Value of $a after $a++ = 11
Value of $b after $b-- = 14

Perl Operators Precedence

The following table lists all operators from highest precedence to lowest.

Show Example

left terms and list operators (leftward)
left ->
nonassoc ++ --
right **
right ! ~ \ and unary + and -
left =~ !~
left * / % x
left + - .
left << >>
nonassoc named unary operators

https://www.tutorialspoint.com/perl/operators_precedence_example.htm

nonassoc < > <= >= lt gt le ge
nonassoc == != <=> eq ne cmp ~~
left &
left | ^
left &&
left || //
nonassoc
right ?:
right = += -= *= etc.
left , =>
nonassoc list operators (rightward)
right not
left and
left or xor
 Previous Page

https://www.tutorialspoint.com/perl/perl_loops.htm

