
Unit - 3

Part - 1

Deadlocks

By

Prof. RB Kallam

Topics to be covered

 Deadlocks

 System Model

 Deadlocks Characterization

 Methods for Handling Deadlocks

 Deadlock Prevention

 Deadlock Avoidance

 Deadlock Detection

 Recovery from Deadlock
2

A Presentation on Operating systems by Dr Ravindra Babu Kallam, KITS Singapur

Deadlock :
 In multiprogramming environment several processes may compete for

the same resource.

 If a process request for resources and if the resources are not available

at that time then the process enters into a wait state.

 It may happen that waiting process will never again change the state,

because the resources they have requested are held with other waiting

processes.

 This situation is called a deadlock.

 Deadlock is defined as the permanent blocking

of a set of processes that compete for system

resources.

Resource allocation graph with

a dead lock

3

A Presentation on Operating systems by Dr Ravindra Babu Kallam, KITS Singapur

System Model:
 A system consists of a finite number of resources to be distributed

among a number of competing processes.

 The resources are partitioned into several types, each consisting of

some number of identical instances.

 Reusable: A resource can be safely used by one process at a time and is

not consumed by that use. Processes obtain resources that they later

release for reuse by others (processors, memory, files, devices,

databases, and semaphores).

 Consumable: these can be created and destroyed. When a resource is

acquired by a process, it is consumed (interrupts, signals, messages,

etc).

 A preemptable resource: is one that can be taken away from the process

owning it with no ill effects. Memory (also CPU) is an example of a

preemptable resource.

 A nonpreemptable resource, in contrast, is one that cannot be taken

away from its current owner without causing the computation to fail

(printer, CD-R(W)floppy disk). 4

A Presentation on Operating systems by Dr Ravindra Babu Kallam, KITS Singapur

A process must request a resource before using it

and must release the resource after using it.
– A process may request as many resources as it requires to carry out its

designated task.

– Obviously, the number of resources requested may not exceed the total

number of resources available in the system.

Under the normal mode of operation, a process may utilize a

resource in only the following sequence:

Request

Use

Release

 The request and release of resources are system calls.

Examples are the request() and release() device, open()

and close() file, and allocate() and free() memory

system calls.
5

A Presentation on Operating systems by Dr Ravindra Babu Kallam, KITS Singapur

Deadlock Characterization:

 Necessary Conditions:

 Mutual exclusion: At least one resource must be held in a

non sharable mode; that is only one process at a time can use

the resource.

 Hold and wait: There must exist a process that is holding at

least one resource and is waiting to acquire additional

resources that are currently being held by other processes.

6

A Presentation on Operating systems by Dr Ravindra Babu Kallam, KITS Singapur

 No preemption: Resources cannot be preempted; that is a

resource can be released only voluntarily by the process

holding it, after that process has completed its task.

 Circular wait: There must exist a set {P0, P1,.., Pn } of

waiting processes such that P0 is waiting for a resource

that is held by P1, P1 is waiting for a resource that is held

by P2,…. Pn, and Pn is waiting for a resource that is held

by P0.

7
A Presentation on Operating systems by Dr Ravindra Babu Kallam, KITS Singapur

 Resource Allocation graph:

•Deadlocks can be described more precisely in terms

of a directed graph called a system resource allocation

graph.

•This graph consists of a set of vertices V and a set of

edges E.

•The set of vertices V is partitioned into two different

types of nodes P = {P1, P2,…., Pn }, the set consisting of

all the active processes in the system, and R= { R1,

R2,…, Rm}, the set consisting of all resource types in

the system.

•A directed edge Pi Rj is called a request edge; and

a directed edge Rj Pi is called an assignment edge.
8A Presentation on Operating systems by Dr Ravindra Babu Kallam, KITS Singapur

The resource allocation graph shown below

have the following situations:

 The sets P,R,and E:

 P={P1,P2,P3}

 R={ R1,R2,R3,R4}

 E={P1 R1, P2 R3, R1 P2,

R2 P2, R2 P1,R3 P3}

 Resource instances:

 One instance of resource type R1

 Two instance of resource type R2

 One instance of resource type R3

 Three instance of resource type R4

P1 P2 P3

R4
R2

R1 R3

Resource allocation graph

9A Presentation on Operating systems by Dr Ravindra Babu Kallam, KITS Singapur

 Process states:

 Process P1 is holding an instance of resource

type R2, and is waiting for an instance of

resource type R1.

 Process P2 is holding an instance of resource

type R1and R2, and is waiting for an instance

of resource type R3.

 Process P3 is holding an instance of R3.

10A Presentation on Operating systems by Dr Ravindra Babu Kallam, KITS Singapur

P1 P2 P3

R4
R2

R1 R3

Resource allocation graph with a dead lock

P1 R1 P2 R3 P3 R2 P1

P2 R3 P3 R2 P2

11A Presentation on Operating systems by Dr Ravindra Babu Kallam, KITS Singapur

Methods for handling deadlocks:

 Principally there are three different methods

 We can use a protocol to ensure that the

system will never enter a deadlock state.

 We can allow the system to enter a deadlock

state and then recover.

 We can ignore the problem all together, and

pretend that deadlock never occur in the

system.

12A Presentation on Operating systems by Dr Ravindra Babu Kallam, KITS Singapur

Deadlock Prevention:

 Deadlock prevention is same as take the

preventive methods before attacking the

deadlock.

 For a deadlock to occur, each of the four

necessary conditions must hold., by

ensuring that at least one of these

conditions can’t hold, we can prevent the

occurrence of the deadlock.

13

A Presentation on Operating systems by Dr Ravindra Babu Kallam, KITS Singapur

 Mutual exclusion:

 Mutual exclusion means only one process can use

the resource at a time, it means resources are not

sharable by the number of processes at a time.

 We can deny this condition with simple protocol i.e.

“Convert the all non sharable resources to sharable

resource". So this condition is not satisfied by the

deadlock, hence we can prevent the deadlock.

 But it is not possible all the time.

14
A Presentation on Operating systems by Dr Ravindra Babu Kallam, KITS Singapur

Hold and wait:

 It means each and every process in the dead

lock state, must hold at least one resource

and wait for at least one resource.

 We can deny this condition with a small

protocol. That is “ A process request the

resources only when the process has none”

 But it is not possible all the time.

15
A Presentation on Operating systems by Dr Ravindra Babu Kallam, KITS Singapur

No preemption:

 It means resources are not released in the
middle of the processing of a resource.

 To ensure that this condition does not hold,
we can use the following protocol.
 If a process that is holding some resources

requests another resource that cannot be
immediately allocated to it, then all resources
currently being held are preempted.

 That is these resources are released and added to
the list of resources for which the process is
waiting.

 The process will be restarted only when it regains
its old resources, as well as the new once that it is
requesting

16

A Presentation on Operating systems by Dr Ravindra Babu Kallam, KITS Singapur

Circular wait:

 One way to ensure that the circular wait condition
never holds is to impose a total ordering of all
resource types, and to require that each process
request resources in an increasing order.

 For this we have two protocols:
 Whenever “ a processes request an instance of

resource type Rj, it has released any resource Ri such
that F(Ri)>F(Rj).

 A process can initially request any number of instances
of a resource type, say Ri. After that, the process can
request the instances of resource type Rj, if and only if

 F(Rj)>F(Ri)”.

 If these two protocols are used, then the circular wait
condition cannot hold.

17

A Presentation on Operating systems by Dr Ravindra Babu Kallam, KITS Singapur

Deadlock avoidance:
 It is a dynamic approach to escape from deadlock .

 With this, if a process request for resources the
avoidance algorithm checks before the allocation of
resources about the state of the system.

 If the state is safe, the system allocates the resources
to the requesting process otherwise do not allocates
the resources.

 So taking care before the allocation

is said to be deadlock avoidance. Deadlock Unsafe

Safe

Safe, unsafe, and deadlock state space
18

A Presentation on Operating systems by Dr Ravindra Babu Kallam, KITS Singapur

Banker’s algorithm:

 It is a dead lock avoidance algorithm, the name

was chosen because the bank never allocates

more than available cash.

 Available:
 A Vector length m indicates the number of available resources

of each type.

 If Available[j] = k, there are k instances of resource type Rj

available.

 Max:
 An n x m matrix defines the maximum demand of each

process.

 If Max [i, j] =k, then Pi may request at most k instances of

resource type Rj
19

A Presentation on Operating systems by Dr Ravindra Babu Kallam, KITS Singapur

 Allocation:

 An n x m matrix defines the number of
resources of each type currently allocated to
each process.

 If Allocation [i , j] = k, then process Pi is
currently allocated k instances of resource
type Rj.

 Need:

 An n x m matrix indicates the remaining
resource need of each process.

 If Need [i , j] = k, then Pi may need k more
instances of resource type Rj to complete its
task.

 Note that Need[i , j]=Max[i , j] –Allocation [i,
j]. 20

A Presentation on Operating systems by Dr Ravindra Babu Kallam, KITS Singapur

 1. Let Work and Finish be vectors of length m and n, respectively. Initialize

work:= Available. and Finish [i]:=false; For i= 0,1,2,..n-1.

 2. Find an i such that both

 Finish[i] == false

 Need i <= Work. If

If no such exist, go to step4.

 3. Work:= Work + Allocation i

Finish[i] := true

go to step 2

 4. If Finish [i] == True, for all i, then the system is in safe state.

 Note: This requires an order of mxn2 operations to detect whether the system

is in safe state.

Safety Algorithm:

21

A Presentation on Operating systems by Dr Ravindra Babu Kallam, KITS Singapur

Algorithm – Example:
 Consider a system with 5 processes P0,P1,P2,P3 and P4, and 3 resources

A,B, C. Resource type A has 10 instances, Resources type B has 5 instances
and Resources C has 7 instances. Suppose that, at time, the following snap
shot of the system has been taken.

A B C A B C

P0 0 1 0 7 5 3

P1 2 0 0 3 2 2

P2 3 0 2 9 0 2

P3 2 1 1 2 2 2

P4 0 0 2 4 3 3

Allocation MAX

Calculate :

•Available matrix

•Need matrix

•And find whether the system

is in the safe state or not.

22

A Presentation on Operating systems by Dr Ravindra Babu Kallam, KITS Singapur

Process

ID

Allocation Max Need (Max-

Allocation)

A B C A B C A B C

P0 0 1 0 7 5 3 7 4 3

P1 2 0 0 3 2 2 1 2 2

P2 3 0 2 9 0 2 6 0 0

P3 2 1 1 2 2 2 0 1 1

P4 0 0 2 4 3 3 4 3 1

7 2 5

A B C

Total 10 5 7

Allocated -7 -2 -5

Available 3 3 2

Execution sequence for the

system to be in safe state:

P1, P3,P4,P0,P2
23

A Presentation on Operating systems by Dr Ravindra Babu Kallam, KITS Singapur

A B C

Available (X) 3 3 2

Resource allocated to P1(Y) 2 0 0

Available (X+Y) 5 3 2

Resource allocated to P3 2 1 1

Available 7 4 3

Resource allocated to P4 0 0 2

Available 7 4 5

Resource allocated to P0 0 1 0

Available 7 5 5

Resource allocated to P2 3 0 2

Available 10 5 7

24

A Presentation on Operating systems by Dr Ravindra Babu Kallam, KITS Singapur

Ex Q: Consider the following snapshot of a system:

Process

ID
Allocation Max

Available

A B C D A B C D A B C D

P0 0 0 1 2 0 0 1 2 1 5 2 0

P1 1 0 0 0 1 7 5 0

P2 1 3 5 4 2 3 5 6

P3 0 6 3 2 0 6 5 2

P4 0 0 1 4 0 6 5 6

Answer the following questions using the banker’s algorithm:

a. What is the content of the matrix Need?

b. Is the system in a safe state?

c. If a request from the process P1 arrives for (0,4,2,0) can the

request be granted immediately?

25

A Presentation on Operating systems by Dr Ravindra Babu Kallam, KITS Singapur

Process

ID
Allocation Max Need Matrix

A B C D A B C D A B C D

P0 0 0 1 2 0 0 1 2 0 0 0 0

P1 1 0 0 0 1 7 5 0 0 7 5 0

P2 1 3 5 4 2 3 5 6 1 0 0 2

P3 0 6 3 2 0 6 5 2 0 0 2 0

P4 0 0 1 4 0 6 5 6 0 6 4 2

2 9 10 12

A B C D

Available 1 5 2 0

Allocated 2 9 10 12

Total

Resources

3 14 12 12

26

A Presentation on Operating systems by Dr Ravindra Babu Kallam, KITS Singapur

A B C D

Available (X) 1 5 2 0

Resource allocated to P0(Y) 0 0 1 2

Available (X+Y) 1 5 3 2

Resource allocated to P2 1 3 5 4

Available 2 8 8 6

Resource allocated to P3 0 6 3 2

Available 2 14 11 8

Resource allocated to P4 0 0 1 4

Available 2 14 12 12

Resource allocated to P1 1 0 0 0

Available 3 14 12 12

Execution sequence: P0, P2,P3,P4 and P1

System is in the safe state

If a request from the process P1 arrives for (0,4,2,0), the request

can be granted immediately. 27

A Presentation on Operating systems by Dr Ravindra Babu Kallam, KITS Singapur

Deadlock Detection:
 Single instance of each resource type:

 If all resources have a single instance, then we can

define a Deadlock algorithm that uses a variant of the

resource allocation graph, called a wait - for graph.

 We obtain this graph from the resource allocation

graph by removing the nodes of type resource and

collapsing the edges.

 More precisely, an edge from Pi to Pj in a wait - for

graph implies that Pi is waiting for process Pj to

release a resource that Pi needs.

 A Deadlock exist in the system if and only if the wait -

for graph contains a cycle.

 To detect the deadlock, the system needs to maintain

the wait - for graph and periodically to invoke an

algorithm that searches for a cycle in the graph.
28

A Presentation on Operating systems by Dr Ravindra Babu Kallam, KITS Singapur

P2

P5

P4

P1 P3

R2 R5

R4R3R1

P2

P5

P4

P1 P3

Resource allocation graph Corresponding wait - for graph

29

A Presentation on Operating systems by Dr Ravindra Babu Kallam, KITS Singapur

 Several instances of a resource type:

 We need a deadlock detection algorithm with several

time varying data structures that are similar to those

used in banker’s algorithm.

 Available: A vector of length m indicates the number

of available resources of each type.

 Allocation: An n x m matrix defines the number of

resources of each type currently allocated to each

process.

 Request: An n x m matrix indicates the current

request of each process. If Request [i, j] = k, then

process Pi is requesting k more instances of resource

type Rj.
30

A Presentation on Operating systems by Dr Ravindra Babu Kallam, KITS Singapur

 1. Let Work and Finish be vectors of length m and n, respectively. Initialize

work:= Available. For i= 1,2,..n, if Allocation = 0, then Finish [i]:=false;

otherwise, Finish[i]:= true.

 2. Find an index i such that both

 Finish[i] == false

 Request i <= Work.

If no such exist, go to step4.

 3. Work:= Work + Allocation i

Finish[i] := true

go to step 2

 4. If Finish [i] = false, for some i, 1<= i <= n, then the system is in a deadlock

state. Moreover, Finish [i]:=false, then process Pi is deadlocked.

 Note: This requires an order of mxn2 operations to detect whether the system

is in deadlocked state.

Banker's algorithm for Deadlock detection

31

A Presentation on Operating systems by Dr Ravindra Babu Kallam, KITS Singapur

Q: Consider a system with 5 processes P0,P1,P2,P3 and P4, and 3

resources A,B, C. Resource type A has 7 instances, Resources type B

has 2 instances and Resources C has 6 instances. Suppose that, at time

T0, we have the following resource allocation state.

Allocation Request Available

A B C A B C A B C

P0 0 1 0 0 0 0 0 0 0

P1 2 0 0 2 0 2

P2 3 0 3 0 0 0

P3 2 1 1 1 0 0

P4 0 0 2 0 0 2

Answer the following questions:

a. What is the content of a matrix Max?

b. Is the system is in safe state?

c. If a request from process P2 arrives for (0,0,1) is the system is

in safe state?
32

A Presentation on Operating systems by Dr Ravindra Babu Kallam, KITS Singapur

Allocation Request Available Max (Allocation+ Req)

A B C A B C A B C A B C

P0 0 1 0 0 0 0 0 0 0 0 1 0

P1 2 0 0 2 0 2 4 0 2

P2 3 0 3 0 0 0 3 0 3

P3 2 1 1 1 0 0 3 1 1

P4 0 0 2 0 0 2 0 0 4

7 2 6

A B C

Available 0 0 0

Allocated 7 2 6

Total

Resources

7 2 6

33

A Presentation on Operating systems by Dr Ravindra Babu Kallam, KITS Singapur

A B C

Available (X) 0 0 0

Resource allocated to P0(Y) 0 1 0

Available (X+Y) 0 1 0

Resource allocated to P2 3 0 3

Available 3 1 3

Resource allocated to P3 2 1 1

Available 5 2 4

Resource allocated to P4 0 0 2

Available 5 2 6

Resource allocated to P1 2 0 0

Available 7 2 6

System is in the safe state and the execution sequence is P0,

P2, P3, P4 and P1

If a request from process P2 arrives for (0,0,1); the system is

not in safe state as the available is < request, i.e (0 1 0 < 0 0 1)
34

A Presentation on Operating systems by Dr Ravindra Babu Kallam, KITS Singapur

H/W Q: Consider a snapshot of a system

Allocation Max Available

A B C D A B C D A B C D

P0 0 0 1 2 0 0 1 2 1 5 2 0

P1 1 0 0 0 1 7 5 0

P2 1 3 5 4 2 3 5 6

P3 0 6 3 2 0 6 5 2

P4 0 0 1 4 0 6 5 6

Answer the following questions using Bankers algorithm?

a. What is the content of a matrix Need?

b. Is the system is in safe state?

c. If a request from process P1 arrives for (0,4,2,0) can the

request be granted immediately?

35

A Presentation on Operating systems by Dr Ravindra Babu Kallam, KITS Singapur

Recovery from Deadlock:

 Process Termination

 Abort all deadlocked processes: This method clearly

will break the deadlock cycle, but at great expense.

 Abort one process at a time until the deadlock cycle

is eliminated: This method incurs considerable

overhead, since, after each process is aborted, a

deadlock-detection algorithm must be invoked to

determine whether any processes are still

deadlocked.

36
A Presentation on Operating systems by Dr Ravindra Babu Kallam, KITS Singapur

 Resource Preemption

 Selecting a victim: we must determine a victim and

preempt it’s all resources and restart.

 Rollback: We must roll back the resources of a

process to some safe state and restart it from that

state.

 Starvation problem: In a system where victim selection

is based primarily on cost factors, it may happen that

the same process is always picked as a victim. As a

result, this process never completes its designated task

and leads to the starvation.

37
A Presentation on Operating systems by Dr Ravindra Babu Kallam, KITS Singapur

