
Unit – 3

Part -2

Process Management

&

Synchronization

By

Dr Capt Ravindra Babu Kallam

Topics to be covered

• Critical Section Problem,

• Synchronization Hardware,

• Semaphores,

• Classical Problems of Synchronization

• Critical Regions

• Monitors

2
Operating systems by Dr Capt RB

Kallam

Critical Section Problem:

• Resources can be divided in to two classes
– Consumable

– Re usable

• These Resources can be either sharable or non
sharable.

• In multiprocessing systems, the processes can compete
for the resources and it leads to the shared data
problems.

• In the example cErrors is a common variable shared by
two asynchronous processes simultaneously and led to
shared data problem.

• Such a variables / resources / etc are called critical
resources and an area is called Critical Section and this
situation is called race condition.

3
Operating systems by Dr Capt RB

Kallam

Example for Shared data Problem:

• Assembly code for vcountErrors

Void vCountErrors (int cNewErrors)

{

cErrors += cNewErrors;

MOVE R1, (cErrors)

ADD R1, (cNewErrors)

MOVE (cErrors), R1

RETURN

}

4
Operating systems by Dr Capt RB

Kallam

Time R1 for Task1 R1 for Task2 cErrors

Task1 calls vCountErrors (9) 5

MOVE R1, (cErrors) 5

ADD R1, (cNewErrors) 14

RTOS switches to Task2

Task2 calls vCountErrors(11)

MOV R1, (cErrors) 5

ADD R1, (cNewErrors) 16

MOV (cErrors), R1 16

RTOS switches to Task1 14

MOV (cErrors), R1 14

5
Operating systems by Dr Capt RB

Kallam

Producer-Consumer problem
• Let us consider of the bounded buffer, and at most BUFFER.SIZE - 1 items

are allowed in the buffer at the same time.

• Add an integer variable counter, initialized to 0. counter is incremented

every time we add a new item to the buffer and is decremented every time

we remove one item from the buffer.

The code for the producer process is as follows: The code for the consumer process is as follows:

6
Operating systems by Dr Capt RB

Kallam

• Although both the producer and consumer routines are correct separately,
they may not function correctly when executed concurrently.

• As an illustration, suppose that the value of the variable counter is
currently 5 and that the producer and consumer processes execute the
statements "counter++" and "counter—" concurrently.

• Following the execution of these two statements, the value of the variable
counter may be 4, 5, or 6! The only correct result, though, is counter == 5,
which is generated correctly if the producer and consumer execute
separately.

• We can show that the value of counter may be incorrect as follows.

• Note that the statement "counter++" may be implemented in machine
language as follows; where register1 is a local CPU register.

• Similarly, the statement "counter --" is implemented as follows; where
register2 is a local CPU register.

7
Operating systems by Dr Capt RB

Kallam

• Even though register1 and register2 may be the same physical register (an

accumulator, say), the contents of this register will be saved and restored by

the interrupt handler.

• The concurrent execution of "counter++" and "counter—” is interleaved as

shown below:

• Notice that we have arrived at the incorrect state "counter == 4", indicating

that four buffers are full, when, in fact, five buffers are full.

• We would arrive at this incorrect state because we allowed both processes

to manipulate the variable counter concurrently. This situation is called race

condition. The variable Counter is called critical resource and an area is

called Critical Section.

8
Operating systems by Dr Capt RB

Kallam

A solution to the critical-section problem must satisfy the
following three requirements:

1. Mutual exclusion: If process P; is executing in its critical
section, then no other processes can be executing in their
critical sections.

2. Progress: If no process is executing in its critical section and
some processes wish to enter their critical sections, must be
permitted without any delay.

3. Bounded waiting: There exists a bound, or limit, on the
number of times that other processes are allowed to enter their
critical sections after a process has made a request to enter its
critical section and before that request is granted.

9
Operating systems by Dr Capt RB

Kallam

Mutual Exclusion Requirements:

 Only one process at a time is allowed into its critical
section among all processes that need to access
critical section

 A process that halts in its non critical section must do
so without interfering with other processes

 It must not be possible for processes requiring access
to a critical section to be delayed indefinitely; no
deadlock or starvation can be allowed.

 When no process is in critical section, any process that
request entry to its critical section must be permitted
to enter without delay.

 A process remains inside critical section for a finite
time only. 10

Operating systems by Dr Capt RB
Kallam

• For Mutual exclusion we have two
approaches:

– Using Software Approach

– Using Hardware Approach

11
Operating systems by Dr Capt RB

Kallam

Two-Process Solutions Using Dekker’s Algorithm-
Software approach

First Attempt

12
Operating systems by Dr Capt RB

Kallam

• A Process (P0 or P1) that wish to execute its critical
section first enters the igloo and examines the black
board. If its number is on the black board, then the
process may leave the igloo and proceeds to its
critical section, otherwise, it leaves the igloo and is
forced to wait.

• From time to time the process reenters the igloo to
check the blackboard. It repeats this exercise until it
is allowed to enter its critical section. This procedure
is known as busy-waiting.

• After a process has gained access to its critical
section and after its has completed that section, it
must return to the igloo and place the number of the
other process on the board. 13

Operating systems by Dr Capt RB
Kallam

Drawbacks:

• If one process fails the other process is
permanently blocked.

• If one process (P0) needs to enter its critical
section once in a Hour and the other (P1)
wants to enter 100times in an hour , then P1
has to Busy-wait until P0 changes the number
board.

14
Operating systems by Dr Capt RB

Kallam

• Algorithm 1

– Assume the two processes as P0and P1

– Let the process share a common integer variable
turn initialized to 0(or 1).

Process 0

.

.

While turn = 0 do no-op;

<critical section>

turn:= 1;

remainder section

.

.
15

Operating systems by Dr Capt RB
Kallam

Second Attempt

16
Operating systems by Dr Capt RB

Kallam

• Algorithm 2

repeat

while flag [1] do no-op;

flag [0] := true;

<critical section>

flag [0] := false;

remainder section

until false;

The structure of process P0 in algorithm 2

17
Operating systems by Dr Capt RB

Kallam

• Algorithm 3

repeat

flag [0] := true;

while flag [1] do no-op;

<critical section>

flag [0] := false;

remainder section

until false;

The structure of process P0 in algorithm 3
18

Operating systems by Dr Capt RB
Kallam

• Algorithm 4

repeat

flag [0] := true;

while flag [1] do no-op;

begin

flag [0] := false;

<delay for a short time>

flag [0] := true;

end;

<critical section>

flag [0] := false;

remainder section

until false;

The structure of process P0 in algorithm 4
19

Operating systems by Dr Capt RB
Kallam

A Correct Solution

20
Operating systems by Dr Capt RB

Kallam

• There is a referee igloo with a black board labeled “turn”.

• When P0 wants to enter the critical section, it sets the flag to
“true”.

• It then goes and check the flag of P1. If that is “false”, P0 may
immediately enter the critical section.

• Otherwise, P0 goes to consult the referee. If it finds that
turn=0, then it knows that it is its turn to insist, and
periodically checks P1 igloo.

• P1 will at some point will change its blackboard to “false”,
allowing P0 to proceed.

• After P0 has used the critical section, it sets the flag to “false”
to free the critical section and sets “turn” to 1 to transfer the
right to insist to P1.

21
Operating systems by Dr Capt RB

Kallam

• A Correct Solution by Dekker’s

repeat

flag [0] := true;

while flag[1] do if turn=1 then

begin

flag [0] := false;

while (turn = 1) do no-op;

flag [0] := true;

end;

<critical section>

turn := 1;

flag [0] := false;

remainder section

…….

The structure of process P0 in final algorithm
22

Operating systems by Dr Capt RB
Kallam

Peterson's solution
• A classic software-based solution to the critical-section problem known as

Peterson's solution.

• Peterson's solution is restricted to two processes that alternate execution
between their critical sections and remainder sections. The processes are
numbered Po and Pi.

• Peterson's solution requires two data items to be shared between the two
processes:
– int turn;

– boolean flag [2]

• The variable turn indicates whose turn it is to enter its critical section.
That is, if turn == i, then process Pi; is allowed to execute in its critical
section.

• The flag array is used to indicate if a process is ready to enter its critical
section. For example, if flag[i] is true, this value indicates that Pi; is ready
to enter its critical section.

• Peterson preserves the following:
– 1. Mutual exclusion .

– 2. The progress requirement.

– 3. The bounded-waiting requirement. 23
Operating systems by Dr Capt RB

Kallam

24
Operating systems by Dr Capt RB

Kallam

Figure: Peterson’s Algorithm for Two Processes
25

Operating systems by Dr Capt RB
Kallam

Synchronization Hardware:
Interrupt Disabling:

• The critical-section problem in uniprocessor systems can be solved by

preventing interrupts from occurring while a shared variable was being

modified.

• With this approach, the current sequence of instructions would be allowed to

execute in order without preemption. This is the approach taken by

nonpreemptive kernels.

• This solution is not as feasible in a multiprocessor environment.

• Disabling interrupts on a multiprocessor can be time consuming, as the
message need to be passed to all the processors; system efficiency
decreases.

26
Operating systems by Dr Capt RB

Kallam

Special Machine Instructions:
• In general, we can state that any solution to the critical-section problem

requires a simple tool—a lock.

• Race conditions are prevented by requiring that critical regions be protected

by locks.

• That is, a process must acquire a lock before entering a critical section; it

releases the lock when it exits the critical section.

27
Operating systems by Dr Capt RB

Kallam

TestAndSet() Instruction:

• Mutual exclusion can be achieved by using a special machine instruction called

TestAndSet() .

• The important characteristic is that this instruction is executed atomically.

• If the machine supports the TestAndSet () instruction, then we can implement mutual

exclusion by declaring a Boolean variable lock, initialized to False.

• The structure of process P, is shown below:

28
Operating systems by Dr Capt RB

Kallam

Swap() instruction:
• The Swap() instruction, operates on the contents of two words; it is defined as

shown in Figure 6.6. It is executed atomically.

• If the machine supports the Swap() instruction, then mutual exclusion can be

provided as follows:

• A global Boolean variable lock is declared and is initialized to false. (lock=False)

• In addition, each process has a local Boolean variable key.

• The structure of process P, is shown in Figure 6.7.

• Although these algorithms satisfy the mutual-exclusion requirement, they do not

satisfy the bounded-waiting requirement.

29
Operating systems by Dr Capt RB

Kallam

Properties of the Machine-Instruction Approach:

• Advantages:

– It is applicable to any number of processes on either a single processor or

multiple processors sharing main memory.

– It is simple and therefore easy to verify.

– It can be used to support multiple critical sections.

• Disadvantages:

– Busy – waiting is employed: while a process is waiting for access to a critical section,
it continues to consume processor time

– Starvation is possible: When a process leaves a critical section and more than one
process is waiting, the selection of a waiting process is arbitrary. Thus, some process
could indefinitely be denied access.

– Dead lock is possible: Consider the following scenario on a single-processor system.

• Process P1 executes the special instruction (e.g., swap, exchange) and enters its critical
section.

• P1 is then interrupted to give the processor to P2, which has higher priority.

• If P2 now attempts to use the same resource as P1, it will be denied access because of
the mutual exclusion mechanism.

• Thus, it will go into a busy waiting loop. However, P1 will never be dispatched because
it is of lower priority than another ready process, P2.

30
Operating systems by Dr Capt RB

Kallam

Semaphores:
• Semaphores are used to solve critical section problems. This is a

synchronization tool.

• A semaphore S is an integer variable that, apart from initialization, is
accessed only through two standard atomic operations: wait () and signal ().

• The following three operations are defined on Semaphore (S)

– A semaphore may be initialized to a non - negative value.

– The wait operation decrements the semaphore value. If the value

become negative, then the process executing the wait is blocked.

Wait (s): While S < 0 do no – op;

S:= S- 1;

– The signal operation increments the semaphore value. If the value is

less then are equal zero, then a process blocked by a wait operation

is unblocked.

Signal (S): S:= S+1;

31
Operating systems by Dr Capt RB

Kallam

Mutual exclusion using semaphores

do{

wait(s);

<critical section>

signal (s);

< remainder section>

} while(true)

32
Operating systems by Dr Capt RB

Kallam

Semaphore operations

33
Operating systems by Dr Capt RB

Kallam

Semaphore variants:

• Binary Semaphores: It is with an integer value that can range

only between 0 and 1. It is simple to implement then the other

semaphores.

• Mutex Semaphore: Similar to a binary semaphore. A key

difference between the two is that the process that locks the

mutex (sets the value to zero) must be the one to unlock it.

these are specially used to solve priority inversion problem.

• Counting Semaphores: Some semaphores that can be taken

multiple times are called counting semaphores.

34
Operating systems by Dr Capt RB

Kallam

Binary Semaphore

A binary semaphore may only take on the values 0 and 1 and can

be defined by the following three operations:

1. A binary semaphore may be initialized to 0 or 1.

2. The semWaitB operation checks the semaphore value. If the value

is zero, then the process executing the semWaitB is blocked. If the

value is one, then the value is changed to zero and the process

continues execution.

3. The semSignalB operation checks to see if any processes are

blocked on this semaphore (semaphore value equals 0). If so, then a

process blocked by a semWaitB operation is unblocked. If no

processes are blocked, then the value of the semaphore is set to

one.

35
Operating systems by Dr Capt RB

Kallam

Binary Semaphore

Figure : A Definition of Binary Semaphore Primitives 36
Operating systems by Dr Capt RB

Kallam

Mutex Semaphore

• Consider n processes, identified in the array P (i), all of which need access
to the same resource.

• Each process has a critical section used to access the resource.

• In each process, a semWait(s) is executed just before its critical section.

• If the value of s becomes negative, the process is blocked.

• If the value is 1, then it is decremented to 0 and the process immediately
enters its critical section; because s is no longer positive, no other process
will be able to enter its critical section.

• The semaphore is initialized to 1. Thus, the first process that executes a
semWait will be able to enter the critical section immediately, setting the
value of s to 0.

• Any other process attempting to enter the critical section will find it busy
and will be blocked, setting the value of s to –1.

• Any number of processes may attempt entry; each such unsuccessful
attempt results in a further decrement of the value of s .

37
Operating systems by Dr Capt RB

Kallam

• When the process that initially entered its critical section departs, s is
incremented and one of the blocked processes (if any) is removed from
the queue of blocked processes associated with the semaphore and put in
a Ready state.

• When it is next scheduled by the OS, it may enter the critical section.

Figure: Mutual Exclusion Using Semaphores
38

Operating systems by Dr Capt RB
Kallam

Counting Semaphores:

 Counting semaphores can be used to control access to a given

resource consisting of a finite number of instances.

 The semaphore is initialized to the number of resources available.

 Each process that wishes to use a resource performs a wait()

operation on the semaphore (thereby decrementing the count).

 When a process releases a resource, it performs a signal () operation

(incrementing the count).

 When the count for the semaphore goes to 0, all resources are being

used.

 After that, processes that wish to use a resource will block until the

count becomes greater than 0.

39
Operating systems by Dr Capt RB

Kallam

Difference between Strong & weak semaphore:

• For both counting semaphores and binary semaphores, a queue

is used to hold processes waiting on the semaphore.

• The question arises of the order in which processes are

removed from such a queue.

• The fairest removal policy is first-in-first-out (FIFO): The

process that has been blocked the longest is released from the

queue first; a semaphore whose definition includes this policy

is called a strong semaphore .

• A semaphore that does not specify the order in which

processes are removed from the queue is a weak semaphore .

40
Operating systems by Dr Capt RB

Kallam

Problems with the Semaphore:

• Forgetting to take the Semaphore

• Forgetting to release the Semaphore

• Taking the wrong Semaphore

• Holding a Semaphore for too long.

• Deadlock and starvation

• Priority inversion and Priority inheritance

Note: The serious problem with the semaphore is that
wait and signal operations may be scattered
throughout a program, and it is not easy to see the
overall effect of these operations on system.

41
Operating systems by Dr Capt RB

Kallam

Classical Problem of Synchronization:

• Dining philosophers problem

• Reader writer problem

• The bounded buffer problem (or) producer –
consumer problem

42
Operating systems by Dr Capt RB

Kallam

Dining philosophers problem

• Consider five philosophers who spend their lives thinking and eating.

• The philosophers share a circular table surrounded by five chairs, each

belonging to one philosopher. In the center of the table is a bowl of rice,

and the table is laid with five single chopsticks (Figure 6.14).

• When a philosopher gets hungry, he tries to pick up the two chopsticks that

are closest to him.

Operating systems by Dr Capt RB
Kallam

43

• A philosopher may pick up only one

chopstick at a time. Obviously, he

cannot pick up a chopstick that is

already in the hand of a neighbor.

• When a hungry philosopher has both his

chopsticks at the same time, he eats

without releasing his chopsticks.

• When he is finished eating, he puts

down both of his chopsticks and starts

thinking again.

• One simple solution is to represent each chopstick with a semaphore.

A philosopher tries to grab a chopstick by executing a wait ()

operation on that semaphore; she releases her chopsticks by executing

the signal() operation on the appropriate semaphores.

semaphore chopstick[5];

• Thus, the shared data are, where all the elements of chopstick are

initialized to 1. The structure of philosopher / is shown in Figure 6.15.

Although this solution guarantees that no two neighbors are eating

simultaneously, it could create a deadlock.

• Suppose that all five philosophers become hungry and each grabs her

left chopstick. All the elements of chopstick will now be equal to 0.

• When each philosopher tries to grab her right chopstick, she will be

delayed forever and leads to deadlock.

Operating systems by Dr Capt RB
Kallam

44

Solution to the dining-philosophers

problem that ensures freedom from

deadlocks are:

• Allow at most four philosophers to be
sitting simultaneously at the table

• Allow a philosopher to pick up her
chopsticks only if both chopsticks are
available (to do this she must pick them up
in a critical section).

• Use an asymmetric solution; that is, an
odd philosopher picks up first her left
chopstick and then her right chopstick,
whereas an even philosopher picks up her
right chopstick and then her left chopstick.

Operating systems by Dr Capt RB
Kallam

45

Reader writer problem
• There is a data area shared among a number of processes. The data area

could be a file or a block of main memory, etc. There are a number of

processes that only read the data area (readers) and a number that only

write to the data area (writers).

• The conditions that must be satisfied are as follows:

1. Any number of readers may simultaneously read the file.

2. Only one writer at a time may write to the file.

3. If a writer is writing to the file, no reader may read it.

• Thus, readers are processes that are not required to exclude one another
and writers are processes that are required to exclude all other processes,
readers and writers alike.

• In this readers do not write to the data area, nor do writers read the data
area while writing.

Operating systems by Dr Capt RB
Kallam

46

Operating systems by Dr Capt RB
Kallam

47

Shared data

• Integer readcount initialized to 0;

• Var Semaphore mutex initialized to
1

• Var Semaphore wrt initialized to 1

Structure of writer process

While (true)

{

wait (wrt);

…

//writing is performed//

…

signal(wrt);

};

Structure of Reader process

While(true) Mutex=1

{ readcount=0

wait(mutex); wrt=1

readcount := readcount +1;

if (readcount == 1) then wait(wrt);

signal(mutex);

…

// reading is performed in the critical
section//

…..

wait(mutex);

readcount := readcount – 1;

if (readcount == 0) then signal(wrt);

signal(mutex):

};

The bounded buffer problem (or) producer –
consumer problem

• We assume that the pool consists of n buffers, each capable of holding one

item.

• The mutex semaphore provides mutual exclusion for accesses to the buffer

pool and is initialized to the value 1.

• The empty and full semaphores count the number of empty and full buffers.

– The semaphore empty is initialized to the value n

– The semaphore full is initialized to the value 0.

– Producer tries to insert data into an empty slot of the buffer

– The consumer tries to remove data from a filled slot in the buffer

– Producer must not insert data when the buffer is full

– The consumer must not remove data when the buffer is empty.

• The general structure (code) for the producer process is shown in Figure

6.10; the code for the consumer process is shown in Figure 6.11.

• We can interpret this code as the producer producing full buffers for the

consumer or as the consumer producing empty buffers for the producer.

48
Operating systems by Dr Capt RB Kallam

Operating systems by Dr Capt RB
Kallam

49

//wait until empty>0

//wait until full>0

//acquire lock

//acquire lock

//release lock

//release lock

//increment full

//increment empty

Critical Regions
• Although semaphores provide a convenient and effective mechanism for

process synchronization, their incorrect use can still result in timing errors
that are difficult to detect, since these errors happen only if some
particular execution sequences take place, and these sequences do not
always occur.

• We have seen an example of such types of errors in the use of counters in
shared data problems / producer consumer problem

• It is for this reason that the semaphores were introduced in the first place.

• Unfortunately, such timing errors can still occur with the use of
semaphores.

• To illustrate how, let us review the solution to the critical- section problem
using semaphores.

• All processes share a semaphore variable mutex, which is initialized to 1.
Each process must execute wait(mutex) before entering the critical
section, and signal(mutex) afterward.

Operating systems by Dr Capt RB
Kallam

50

• If this sequence is not observed, two processes may be in their critical sections

simultaneously.

• Let us examine the various difficulties that may result. Note that these

difficulties will arise even if a single process is not well behaved. This situation

may be the result of an honest programming error or of an uncooperative

programmer.

• Suppose that a process interchanges the order in which the wait and signal

operations on the semaphore mutex are executed or taking the wrong

semaphore or not considering the semaphore resulting in the following

execution:

• These examples illustrate that various types of errors can be generated easily

when semaphores are used incorrectly to solve the critical-section problem.

51

signal (mutex);
………………….
<Critical section>
…………………..
Wait(mutex);

* Leads to failure of
mutual exclusion

wait (mutex);
………………….
<Critical section>
…………………..
Wait(mutex);
* Leads to the
deadlock

………………….
<Critical section>
…………………..

*either mutual exclusion is
violated or a deadlock will
occur

• To deal with the type of errors we have, a number of high-level language

constructs, two of them are:

– the critical region (sometimes referred to as conditional critical region).

– the monitor.

• we assume that a process consists of some local data, and a sequential
program that can operate on the data. The local data can be accessed by
only the sequential program that is encapsulated within the same process.

• That is, one process cannot directly access the local data of another
process. Processes can, however, share global data.

• The critical-region synchronization construct requires that a variable v of
type T, which is to be shared among many processes, be declared as

var v: shared T;
• The variable v can be accessed only inside a region statement of the

following form:

region v when B do S

52

• This construct means that, while statement S is being executed,
no other process can access the variable v.

• The expression B is a Boolean expression that governs the
access to the critical region. When a process tries to enter the
critical section region, the Boolean expression B is evaluated.

• If the expression is true, statement S is executed.

• If it is false, the process relinquishes the mutual exclusion and is
delayed until B becomes true and no other process is in the
region associated with v.

• The critical-region construct guards against certain simple errors
associated with the semaphore solution to the critical-section
problem that may be made by a programmer.

• Note that it does not necessarily eliminate all synchronization
errors; rather, it reduces their number.

Operating systems by Dr Capt RB
Kallam

53

Monitors:
• A monitor is a software module consisting of one or

more procedures, an initialization sequence, and
local data.

• The chief characteristics of a monitor are the
following:

– The local data variables are accessible only by the

monitors procedures and not by any external

procedures.

– A process enters the monitor by invoking one of its

procedures.

– Only one process may be executing in the monitor at

a time; any other process that has invoking the

monitor is suspended while waiting for the monitor to

become available. 54
Operating systems by Dr Capt RB

Kallam

• Monitor is able to provide mutual exclusion.

• The data variables in the monitor can be accessed by only one process at a
time.

• Shared data structures / resources can be protected by placing them in a
monitor to achieve mutual exclusion.

• A monitor supports synchronization by the use of condition variables that
are contained within the monitor and accessible only with in the monitor.

• Although a process can enter the monitor by invoking any of its

procedures, we can think of the monitor as having a single entry point that

is guarded so that only one process may be in the monitor at a time.

• Other processes that attempt to enter the monitor join a queue of processes
blocked waiting for monitor availability.

• Once a process is in the monitor, it may temporarily block itself on
condition x by issuing cwait(x) ; it is then placed in a queue of processes
waiting to reenter the monitor when the condition changes, and resume
execution at the point in its program following the cwait(x) call.

• If a process that is executing in the monitor detects a change in the
condition variable x , it issues csignal(x) , which alerts the corresponding
condition queue that the condition has changed.

55
Operating systems by Dr Capt RB

Kallam

56
Operating systems by Dr Capt RB

Kallam

• Two functions operate on the condition variables are wait

and signal.

– Cwait (c): Suspend execution of the calling process

on condition c, if another process is already using the

same resource of single instance. It means the

monitor is now allocated to another process.

– Csignal (c): Resume execution of some process

suspended after a cwait on the same condition. If

there are several such processes, choose one of

them; if there is no such process do nothing.

57
Operating systems by Dr Capt RB

Kallam

Advantages / operations of Monitors:

• Encapsulate the shared data you wants to protect.

• Acquires the mutex at the start.

• Operates on the shared data.

• Temporarily releases the mutex if it can't complete.

• Reacquires the mutex when it can continue.

• Releases the mutex at the end.

Operating systems by Dr Capt RB
Kallam

58

