
Memory Management
&

Virtual Memory
Unit - 4

A Presentation by
Dr Capt Ravindra Babu Kallam

Prof &Head CSE, KITS(S)

Topics to be covered:

• Logical versus Physical Address Space,
Swapping,

• Contiguous Allocation

• Paging, Segmentation

• Segmentation with Paging

• Virtual memory

– Demand Paging, Page fault, Page Replacement

– Thrashing

– Page Replacement Algorithms.
2

Operating system 4th Unit by Dr Cpat R
B Kallam

3

Secondary
Memory

Main
Memory

Cache
Memory

CPU

Word Transfer Block Transfer

Transition between memory's and CPUOperating system 4th Unit by Dr Cpat R
B Kallam

4

Magnetic tapes

Optical Disk

Magnetic Disk

Electronic Disk

Main Memory

Cache

Registers

Secondary Memory

Primary Memory

Storage Device Hierarchy
Operating system 4th Unit by Dr Cpat R

B Kallam

Memory Management Requirements:

• Relocation:

– Programmer does not know where the program will be placed in memory

when it is executed .

– While the program is executing, it may be swapped to disk due to several

reasons and returned to main memory at a different location is called

relocation.

• Protection:

– Processes should not be able to reference memory locations in another

process without permission.

– It is also one of the major requirement in Memory management.

– Memory protection requirement must be satisfied by the processor

(hardware) rather than the operating system (software)

5
Operating system 4th Unit by Dr Cpat R

B Kallam

• Sharing:

– A protection mechanism must have the flexibility to allow several

processes to access the same portion of memory .

– Processes that are cooperating on some task may need to share access
to the same data structure.

-- The memory management system must therefore allow controlled
access to shared areas of memory without compromising essential
protection.

• Logical organization:

– Main Memory in a computer system is organized as a linear, or one-
dimensional order of a sequence of bytes or words. Secondary
memory, at its physical level, is similarly organized.

– Programs are written in modules

– Modules can be written and compiled independently

– Different degrees of protection given to modules (read-only, execute-

only) and these modules can be shared among the processes

6
Operating system 4th Unit by Dr Cpat R

B Kallam

• Physical organization:

– Computer memory is Physically organized into at least two levels,
referred to as main memory and secondary memory.

– Main memory provides fast access at relatively high cost. In addition,
main memory is volatile; that is, it does not provide permanent
storage.

– Secondary memory is slower and cheaper than main memory and is
usually not volatile.

– Thus secondary memory of large capacity can be provided for long-
term storage of programs and data, while a smaller main memory
holds programs and data currently in use for short duration.

– Memory available for a program plus its data may be insufficient,

Overlaying allows various modules to be assigned the same region of

memory

7
Operating system 4th Unit by Dr Cpat R

B Kallam

Loading Programs in to Main Memory:

• Fixed Partitioning or Static Partitioning
– equal partitioning
– unequal partitioning

• Internal fragmentation

• Placement algorithms

» First Fit

» Next Fit

» Best Fit

» Worst Fit

• Dynamic Partitioning
– External fragmentation
– Memory Compaction

8
Operating system 4th Unit by Dr Cpat R

B Kallam

Fixed Partitioning or Static Partitioning

Operating System 25Mb

8Mb

8Mb

8Mb

8Mb

8Mb

8Mb

a) Equal Size Partitions

9

Operating System 25Mb
2Mb
4Mb

6Mb

8Mb

15Mb

12Mb

b) Un-Equal Size Partitions

Note: OS occupies some fixed portion of the main memory
and the rest of the memory is available for use by multiple
processes

Operating system 4th Unit by Dr Cpat R
B Kallam

Equal partitioning

• In this memory is divided in to equal size partitions

• Any process whose size is lees than or equal to the
partition size can be loaded in to any available partition

Disadvantages:

-If a process is bigger than the partition we cannot allocate the
space.

-If a process is smaller than the partition it leads to internal
fragmentation .

Note: Internal Fragmentation: If a space is left unused with in the
partition is called internal fragmentation.

10
Operating system 4th Unit by Dr Cpat R

B Kallam

Unequal partitioning

• To reduce the internal fragmentation in previous
approach, now we divide the memory into unequal
partitions as shown in the previous diagram.

• Use placement algorithms (First Fit, Next Fit and Best
Fit) to allocate the memory partition to the processes.

Disadvantage:

-It suffers with the internal fragmentation

11
Operating system 4th Unit by Dr Cpat R

B Kallam

Placement algorithms

• First-Fit: It begins to scan memory from the

beginning and chooses the first available block that

is large enough.

• Next- Fit: It begins to scan memory from the

location of the last placement and choose the next

available block that is large enough.

• Best Fit: It chooses the block that is closest in size

to the request.

• Worst Fit: It chooses the largest leftover hole.

12
Operating system 4th Unit by Dr Cpat R

B Kallam

Dynamic Partitioning
• In this memory is allocated at run time.

• When a process is brought in to the main memory, it is

allocated exactly as much memory as it requires.

Consider an example:

• As shown in the diagram, initially we could able to accommodate

U1 to U4 in the main memory as per their requirements but we

could not able to load U5, because it requires 22Mbytes and the

available space is only 20Mb.

• Let us assume that U1 completed its execution and left the M.M

and a hole of 2Mb has created and the total free space available

in M.M is now 22Mb.

• Even though 22Mb exactly matches with U5 requirement we

cannot accommodate U5 in M.M, because memory space is not

available as a single block of 22Mb and we do not have a method

to divide the process in to parts and it leads to External

fragmentation 13
Operating system 4th Unit by Dr Cpat R

B Kallam

14

Operating System
25Mb

2M U-1

5M U-2

10M U-3

25M U-4

20M free space

Ex:

User 1 -- 2M

User 2 -- 5M

User 3 -- 10M

User 4 -- 25M

User5-- 22M

Operating System
25Mb

2M U-1

5M U-2

10M U-3

25M U-4

20M free space

External fragmentation: If a block is left unused between
two partitions is called External fragmentation, here 2Mb space
is the external fragmentation.

Operating system 4th Unit by Dr Cpat R
B Kallam

• To avoid External fragmentation we
have an approach called Memory
Compaction.

• Memory Compaction: Collecting all
unused blocks to a common location is
called Memory compaction.

• With this, even though we can solve
external fragmentation it is not an
efficient method.

• Because it need dynamic relocation
capability and it is a time consuming
process.

15

Operating
System 25Mb

5M U-2

10M U-3

25M U-4

22M free
space

Operating system 4th Unit by Dr Cpat R
B Kallam

• Simple Paging.
– Page

– Frame or Page frame

– Page table, Internal fragmentation

– Logical to Physical address conversion

– Multilevel page table

– Inverted page table

– TLB

• Simple Segmentation
– External fragmentation

– Memory Compaction

– Logical to Physical address conversion

• Combined Paging and Segmentation
16

Operating system 4th Unit by Dr Cpat R
B Kallam

Simple Paging:
• It is similar to the static partitioning. It avoids external

fragmentation and the need of compaction.

• The Main memory is partitioned into equal size chunks that

are relatively small, and each process is also divided into small

fixed size chunks of the same size.

• The chunks of the process is known as pages, could be

assigned to available chunks of the memory is called frames or

page frames.

• Consider an ex: process A has 3, B has 2, C has 4 and D has

4pages and available frames are 12 in M.M.

• Also assume that B has completed its task and swapped out as

shown in fig c.

• For each user O.S maintains a separate page table for

reference, which contains two entries, p# and F#

• The pages in the frames need not to be stored continuously.
17

Operating system 4th Unit by Dr Cpat R
B Kallam

Assigning Process pages to free frames in the
main memory:

18

Frame # M.M
0
1
2
3
4
5
6
7
8
9

10
11

Frame # M.M
0 A0
1 A1
2 A2
3 B0
4 B1
5 C0
6 C1
7 C2
8 C3
9

10
11

Frame # M.M
0 A0
1 A1
2 A2
3
4
5 C0
6 C1
7 C2
8 C3
9

10
11

Frame # M.M
0 A0
1 A1
2 A2
3 D0
4 D1
5 C0
6 C1
7 C2
8 C3
9 D2

10 D3
11

a) Twelve available
frames

b) Load process
A,B&C

C) Swap out B D)Load Process D

Operating system 4th Unit by Dr Cpat R
B Kallam

Page tables:

19

P# F# P# F# F#

0 0 0 3 11

1 1 1 4

2 2

Process table A Process table B Free frame list

P# F# P# F#

0 5 0 3

1 6 1 4

2 7 2 9

3 8 3 10

Process table C Process table D
Operating system 4th Unit by Dr Cpat R

B Kallam

Logical to Physical address conversions:

Logical to Physical address translation in paging.

– Logical Address: It is a temporary address; a reference to the memory

location independent of the current assignment of data to memory; a

translation must be made to a physical address before the memory access.

– Physical Address: The absolute location of a unit of data in memory.

The following steps are needed for address translation:

 Extract the page number as the leftmost n bits of the logical address.

 Use the page number as an index into the process page table to find the

frame number, k .

 Finally, The physical address is easily constructed by appending the frame

number to the offset.

20
Operating system 4th Unit by Dr Cpat R

B Kallam

Address translation in paging

21
Operating system 4th Unit by Dr Cpat R

B Kallam

22

Ex: Let us assume that a user has 64pages, its

corresponding frames in sequence are 000101, 000110,

011001, etc and the logical address is

“0000010111011110” convert this into physical address.

H/W:Ex2: Let us assume that a user has 7 pages, its corresponding

frames in sequence are 001, 011, 010, etc and the logical address is

“0000110111001110” convert this into physical address.Operating system 4th Unit by Dr Cpat R
B Kallam

Multilevel Paging
• Most modern computer systems support a very large logical address space

(232 to 264). In such an environment the page table itself becomes

excessively large.

• For example, consider a system with a 32-bit logical address space. If the

page size in such a system is 4Kbytes (212), then a page table may consist

of up to 1 million entries (232 -212 =220).

23

• If the physical address (Main memory) is of 228 bits, because the page size

is 4Kbytes each, then the frame size is also 4Kbytes which can be written

as is 212 . With this the offset value =12 and the frame number is in 28-

12=16bits=2bytes.

• With this the frame number in the page table is of 2bytes and the page table

is having 220 entries, Hence the total buffer required for 1 page table to

store is 220 X2Bytes= 2MB, where as the size of the frame is only 4KB.

• So we cannot fit the page table in a single frame.
Operating system 4th Unit by Dr Cpat R

B Kallam

• To solve this problem a page table can be divided in to multiple level.

• In our example, the page number is further divided into a 9-bit page

number (2MB/4KB= 221/212=29)(Outer page table) and a 11-bit page offset

(220-29=211)or (4KB/2B)(Inner page table). Thus, a logical address is as

follows:

24

page number Page Offset

P1 P2 d

09 11 12

Figure . Address translation for a two-level 32-bit paging architecture.

• Where P1 is an index into the outer page table, and P2 is the displacement

within the inner page table. The address-translation scheme for this

architecture is shown in Figure below.

Operating system 4th Unit by Dr Cpat R
B Kallam

25

Ex:2: Two level paging system given in Stallings

Operating system 4th Unit by Dr Cpat R
B Kallam

Inverted page table

• Usually, each process has an associated page table. The page

table has one entry for each page that the process is using.

Storing all these page tables of each process in main memory

leads to the wastage of memory.

• To solve this problem, an inverted page table is used.

• It is a global page table maintained by the operating system for

all the processes.

• There is just one page table in the entire system, implying that

additional information needs to be stored in the page table to

identify page table entries corresponding to each process.

• It stores one entry per physical frame, and is a linear array

where the contents at each location is <pid (process id), virtual

page number> and the index of each location is the physical

frame address. 26
Operating system 4th Unit by Dr Cpat R

B Kallam

27

• The inverted page table is then searched for a match. If a

match is found—say, at entry i—then the physical address

is generated as shown in the figure.

• If no match is found, then an illegal address access has

been attempted.

Operating system 4th Unit by Dr Cpat R
B Kallam

Ruff page

28
Operating system 4th Unit by Dr Cpat R

B Kallam

Virtual Memory:

• Virtual paging.

–Page fault

–Fetch Policy

Pre paging

Demand Paging

–Thrashing

29
Operating system 4th Unit by Dr Cpat R

B Kallam

Virtual Memory:
• One of the major resources in the computer is memory, to utilize the

memory in efficient way and to increase the CPU utilization in multiuser

OS, we need to share the Memory for more number of users.

• In the process of evaluation memory allocation, we have learned how to

divide our process and memory into multiple partitions using paging and

segmentation.

• As ours is a control flow computer, the CPU Executes instructions in

continues fashion based on the program counter one after another. With this

it is conformed that we need not to fetch the total pages of a process in to

the memory.

• With this approach, each process is allowed to bring only a fixed number
of pages in to the memory. Hence we can accommodate more number of
processes in the main memory.

• While executing a process, If at all, if the required page is not available in
the main memory, it may leads to page fault, then CPU demands for that
page and it is known as demand paging.

30
Operating system 4th Unit by Dr Cpat R

B Kallam

• Using swapping we need to bring the required page in to the
memory by sending one of the available pages out, if again
page fault occurs, immediately after the previous swapping
and it continuous further it may lead to Thrashing.

• To avoid thrashing we need to use the page replacement
algorithms and should find the best algorithm with minimum
page faults.

• An end user or computer operator may not to know what
really happening inside the computer, because he could able
to execute all processes concurrently, he may think that, he is
having sufficient memory inside the computer. But in reality
which is not there. This Illusion in related to memory is called
Virtual memory, and if we apply paging it is called Virtual
paging.

31
Operating system 4th Unit by Dr Cpat R

B Kallam

Ex:

 If we have two processes P1&P2; process P1 requires 100Kb
and P2 also requires 100Kb and if the total available space is
only 100Kb then how they will execute the programs in
parallel?.

 To solve this problem by using paging technique we can divide
P1 into 2 pages and P2 into 2 pages each of 50Kb and also
memory into 2 frames of each 50Kb, by allocating 1 frame to
each process and using swapping technique we can execute
both the process in parallel and can get the results.

 But the end users will think that, there is sufficient buffer
space that is 100Kb for each process because they could able
to execute the program. To fulfull above requirement we
should have 200Kb but in reality we have only 100Kb, this
approach is called Virtual memory, as we have used paging it
in turn called Virtual paging.

32
Operating system 4th Unit by Dr Cpat R

B Kallam

Translation look aside buffer (TLB)
• In principle every virtual memory reference can

cause two physical memory accesses: one to fetch
the appropriate page table entry and one to fetch
the desired data.

• Thus a straight forward virtual memory scheme
would have a effect of doubling the memory access
time.

• To overcome this problem most virtual memory
schemes make use of a special high speed cache for
page table entries, usually called a TLB.

• This cache function in the same way as a memory
cache and contains those page tables entries that
have been most recently used.

33
Operating system 4th Unit by Dr Cpat R

B Kallam

• Given a virtual address, the processer will first examine the
TLB. If the desired page table entry is present (TLB hit), then
the frame number is retrieved and the real address is formed .

• If the desired page table entry is not found (TLB miss), then
the processor uses the page number to index the process
page table in the main meory and examine the corresponding
page table entry.

• If the “present bit” is set, then the page is in the main
memory, and the processer can retrieve the frame number
from the page table entry to form the real address. The
processor also updates the TLB to include this new page table
entry.

• Finally if the “ Present bit” is not set, then the desired page
not in main memory and a memory access fault, called a page
fault, is issued.

34
Operating system 4th Unit by Dr Cpat R

B Kallam

35
Operating system 4th Unit by Dr Cpat R

B Kallam

Segmentation:

• It is similar to dynamic partitioning

• A user program can be subdivided using segmentation, in

which the program and its associated data are divided into a

number of segments .

• It is not required that all segments of all programs be of the

same length, although there is a maximum segment length.

• Due to the use of unequal-size segments, segmentation is

similar to dynamic partitioning.

• The difference, compared to dynamic partitioning, is that with

segmentation a program may occupy more than one partition,

and these partitions need not be contiguous.

36
Operating system 4th Unit by Dr Cpat R

B Kallam

• With segmentation, sharing and different degree of protection

is possible.

• A Segment table is maintained for each process and it contains

three entries; s#, length of the seg., and Base address.

• As with paging, a logical address using segmentation consists

of two parts, a segment number and an offset.

37
Operating system 4th Unit by Dr Cpat R

B Kallam

• Consider an address of n+m bits, where the leftmost n bits are the
segment number and the rightmost m bits are the offset.

• For example if m = 12, the maximum segment size is 212 = 4096.

• The following steps are needed for address translation:
– Extract the segment number as the leftmost n bits of the logical address.

– Use the segment number as an index into the process segment table to find the starting
physical address/ base address of the segment.

– Compare the offset, expressed in the rightmost m bits, to the length of the segment. If
the offset is greater than or equal to the length, the address is invalid.

– The desired physical address is the sum of the starting physical address of the segment
plus the offset.

38Translation in the Segmentation Operating system 4th Unit by Dr Cpat R
B Kallam

• Consider an example, we have the logical address 0001001011110000,
which is segment number 1, offset 752. Suppose that this segment is
residing in main memory starting at physical address 0010000000100000.
Then the physical address is 0010000000100000 + 001011110000 =
0010001100010000.

39
Operating system 4th Unit by Dr Cpat R

B Kallam

40

Ex 1:

Ex 2:

Operating system 4th Unit by Dr Cpat R
B Kallam

• Virtual Segmentation.

–Segmentation fault

–Fetch Policy

–Pre Segmentation

–Demand Segmentation

– Placement Policy

–First Fit

–Next Fit

–Best Fit
41

Operating system 4th Unit by Dr Cpat R
B Kallam

Page replacement algorithms:
FIFO:

• This policy treats the page frames allocated to a process as a circular
buffer, and pages are removed in round-robin style.

• All that is required is a pointer that circles through the page frames of
the process.

• With this approach when a page must be replaced, the oldest page is
chosen for replacement.

Optimal:

• This policy selects for replacement that page for which the time to the
next reference is longest.

• Use of this page-replacement algorithm guarantees the lowest
possible page fault rate for a fixed number of frames

• This policy is impossible to implement, because it would require the
OS to have perfect knowledge of future events.

42
Operating system 4th Unit by Dr Cpat R

B Kallam

LRU (Least Recently Used):

• This policy replaces the page in memory that has not been
referenced for the longest time.

• The problem with this approach is the difficulty in
implementation.

• One approach would be to tag each page with the time of its
last reference; this would have to be done at each memory
reference, both instruction and data.

• It creates lot of overhead and expensive.

43

Ex: Let us assume that only three frames (fixed resident set size) are

allocated for a process, the execution of the process requires

reference to five distinct pages and the page address stream formed

by executing the program is

2 3 2 1 5 2 4 5 3 2 5 2. Apply FIFO, Optimal and LRU page

replacement algorithms and the number of page faults.

Operating system 4th Unit by Dr Cpat R
B Kallam

44F = page fault occurring after the frame allocation is initially filledOperating system 4th Unit by Dr Cpat R
B Kallam

Ruff Page
2 3 2 1 5 2 4 5 3 2 5 2

2 2 2 2

3 3 3

1

45
Operating system 4th Unit by Dr Cpat R

B Kallam

• LRU Approximation Algorithms:

– Additional Reference Bits Algorithm

– Second Chance Algorithm

– Enhanced Second Chance Algorithm

– Counting Algorithms:

• LFU Algorithm

• MFU Algorithm

– Page Buffering Algorithm

46
Operating system 4th Unit by Dr Cpat R

B Kallam

Additional Reference Bits Algorithm:
• We can gain additional ordering information by recording the reference bits at

regular intervals.

• We can keep an 8-bit byte for each page in a table in memory

• At regular intervals (say for every 100 milliseconds), a timer interrupt
transfers control to the OS.

• The OS shifts the reference bit for each page into the higher order bit of its 8
bit byte, shifting the other bits right 1 bit, discarding the lower order bit.

• These 8 bit shift register contain the history of page use for the last eight time
periods.

• If the shift register contains 00000000, then the page has not been used for
eight time periods.

• The page that is used at least once each period would have a shift register
value of 11111111.

• A page with a history register value of 11000100 has been used more recently
than has one with 01110111. If we interpret these 8 bit bytes as unsigned
integers, the page with the lowest number is the LRU page, and it can be
replaced.

47
Operating system 4th Unit by Dr Cpat R

B Kallam

Example:

48

Snapshot -1

Snapshot -2
Operating system 4th Unit by Dr Cpat R

B Kallam

Second Chance Algorithm (clock)

• It requires the association of an additional bit with each frame, referred to as a

use bit.

• When a page is first loaded in to a frame in memory, the use bit for that frame is

set to 1. When the page is subsequently referenced, its use bit is set to 1.

• For the page replacement algorithm, the set of frames that are candidates for

replacement is considered to be a circular buffer with which a pointer is

associated.

• When a page is replaced the pointer is set to indicate the next frame in the

buffer.

• When it is time to replace a page, the OS scans the buffer to find a frame with a
use bit set to 0.

• Each time it encounter a frame with a use bit of 1, it resets that bit to 0.

• If any of the frames in the buffer have a use bit of 0 at the beginning of this
process, the first such frame encountered is chosen for replacement.

• If all the frames have a use bit of 1,then the pointer will make one complete
cycle through the buffer, setting all the use bits to 0, and stop at its original
position, replacing the page in that frame.

49
Operating system 4th Unit by Dr Cpat R

B Kallam

50
Operating system 4th Unit by Dr Cpat R

B Kallam

Enhanced Second Chance Algorithm

• The clock policy can be enhanced by considering both the reference
bit and modify bit as an ordered pair.

• With these 2 bits, we have the following 4 possible classes:

1. (0,0) neither recently used nor modified – best page to replace.

2. (0,1) not recently used but modified – not quite as good, because the
page will need to be written out before replacement.

3. (1,0) recently used but clean – probably will be used again soon.

4. (1,1) recently used and modified – probably will be used again, and
write out will be needed before replacing it.

When a page has to be replaced, the first page encountered in the lowest
non empty class is chosen.

51
Operating system 4th Unit by Dr Cpat R

B Kallam

Counting Algorithms:

• LFU Algorithm: The Least Frequently Used page replacement
algorithm require that the page with the smallest count be
replaced.

• MFU Algorithm: The Most Frequently Used page replacement
algorithm require that the page with the greatest count be
replaced.

52
Operating system 4th Unit by Dr Cpat R

B Kallam

Page Buffering Algorithm

• Maintaining pool of free frame list:

– Systems commonly keep a pool of free frames.

– When a page fault occurs, a victim frame is chosen as before.

– However, the desired page is read into a free frame from the pool

before the victim is written out.

– This procedure allows the process to restart as soon as possible, without

waiting for the victim page to be written out.

– When the victim is later written put, its frame is added to the free-frame

pool.

• Maintaining pool of modified frame list:

– An expansion of free frame list is to maintain a list of modified pages.

– Whenever the paging device is idle, a modified page is selected and is

written to the disk.

– Its modify bit is then reset. This scheme increases the probability that a

page will be clean when it is selected for replacement and will not need

to be written out.
53

Operating system 4th Unit by Dr Cpat R
B Kallam

Allocation of Frames:

• Minimum Number of frames:

– We must also allocate at least a minimum number of frames.

– The minimum number of frames is defined by the computer

architecture.

• Allocation Algorithm

– Equal allocation

– Proportional allocation

• Global Versus Local Allocation

54
Operating system 4th Unit by Dr Cpat R

B Kallam

Allocation Algorithm:

• Equal allocation: It is easiest way to split m frames among n

processes is to give everyone an equal share, m / n frames.

• Example:

– Process-1 needs 10 frames

– Process – 2 needs 127 frames

– Available is only 62 frames

– With this approach each will get 31 frames

– The process-1 does not need more than 10 frames, so the

other 21 are strictly wasted.

55
Operating system 4th Unit by Dr Cpat R

B Kallam

Proportional allocation: we allocate available memory to each

process according to its size.

– Let the size of the virtual memory for process Pi be Si, and

define

S=

56

Then, if the total number of available frames is m, we allocate ai

frames to process Pi, where ai is approximately

ai = (Si / S) X m.

For previous example:

process-1 gets (10/137) X 62 = 4

process-2 gets (127/ 137) X 62 = 57

In this way both processes share the available frames according

to their needs.

Si

Operating system 4th Unit by Dr Cpat R
B Kallam

Global Versus Local Allocation

• Global replacement – process selects a replacement frame

from the set of all frames; one process can take a frame from

another.

• Local replacement – each process selects from only its own set

of allocated frames.

57
Operating system 4th Unit by Dr Cpat R

B Kallam

Combined segmentation and paging:

• To combine the advantages of both paging and segmentation

some systems are equipped with segmentation with paging.

• In this the user address space is broken up into number of

segments and each segment in turn broken up into number of

fixed size pages, which are in equal in length to main memory

frame.

• If the segment have length less than that of page , the segment

occupies just one page.

• From the programmer's point of view the logical address is

still consists of segment number and segment offset.

• From the system point of view the segment offset is viewed as

page number and page offset for a page within the specified

segment

58
Operating system 4th Unit by Dr Cpat R

B Kallam

59

segmentation

Operating system 4th Unit by Dr Cpat R
B Kallam

Combined segmentation and paging:

60
Operating system 4th Unit by Dr Cpat R

B Kallam

61

The End

Operating system 4th Unit

by Dr Cpat R B Kallam

