
UNIT-II

 DM Notes 1

UNIT-II

ASSOCIATION RULES

2.1 Introduction:

• ARM is to find out association rules or Frequent patterns or subsequences or

correlation relationships among large set of data items that satisfy the predefined

minimum support and confidence from a given database.

• Frequent patterns are patterns (such as itemsets, subsequences, or substructures) that

appear in a data set frequently. For example, a set of items, such as milk and bread,

that appear frequently together in a transaction data set is a frequent itemset. A

subsequence, such as buying first a PC, then a digital camera, and then a memory

card, if it occurs frequently in a shopping history database, is a (frequent) sequential

pattern. A substructure can refer to different structural forms, such as subgraphs,

subtrees, or sublattices, which may be combined with itemsets or subsequences.

What Is Association Mining?

 Association rule mining:

 Finding frequent patterns, associations, correlations, or causal structures

among sets of items or objects in transaction databases, relational databases,

and other information repositories.

 Applications:

 Basket data analysis, cross-marketing, catalog design, loss-leader analysis,

clustering, classification, etc.

2.1.1 Market Basket Analysis:

Frequent itemset mining leads to the discovery of associations and correlations among items

in large transactional or relational data sets. A typical example of frequent itemset mining is

market basket analysis. This process analyzes customer buying habits by finding associations

between the different items that customers place in their ―shopping baskets‖. The discovery

of such associations can help retailers develop marketing strategies by gaining insight into

which items are frequently purchased together by customers.

www.android.universityupdates.in | www.universityupdates.in | www.ios.universityupdates.in

www.android.previousquestionpapers.com | www.previousquestionpapers.com | www.ios.previousquestionpapers.com

UNIT-II

 DM Notes 2

2.1.2 Frequent Itemsets, Closed Itemsets, and Association Rules

Let I ={I1, I2, ... , Im} be a set of items. Let D, the task-relevant data, be a set of database

transactions where each transaction T is a set of items such that T _ I . Each transaction is

associated with an identifier, called TID.

An association rule is an implication of the form AB, where A I , B I , and AB=f. The

rule AB holds in the transaction set D with support s, where s is the percentage of

transactions in D that contain AB (i.e., the union of sets A and B, or say, both A and B). The

rule A B has confidence c in the transaction set D, where c is the percentage of

transactions in D containing A that also contain B. This is taken to be the conditional

probability, P(B|A). That is,

If the relative support of an itemset I satisfies a prespecified minimum support threshold (i.e.,

the absolute support of I satisfies the corresponding minimum support count threshold), then I

is a frequent itemset. The set of frequent k-itemsets is commonly denoted by Lk.

www.android.universityupdates.in | www.universityupdates.in | www.ios.universityupdates.in

www.android.previousquestionpapers.com | www.previousquestionpapers.com | www.ios.previousquestionpapers.com

UNIT-II

 DM Notes 3

Support is used to eliminate uninteresting rules. Low support is likely to be uninteresting

from a business perspective because it may not be profitable to promote items.

Confidence measures the reliability of the inference made by a rule. For rule AB, the

higher confidence , the more likely it is for B to be present in transactions that contain A. It is

used to estimate conditional probability of B given A.

In general, association rule mining can be viewed as a two-step process:

1. Find all frequent itemsets: By definition, each of these itemsets will occur at least as

frequently as a predetermined minimum support count, min sup.

2. Generate strong association rules from the frequent itemsets: By definition, these rules

must satisfy minimum support and minimum confidence.

2.2 The Apriori Algorithm:

Apriori is a seminal algorithm proposed by R. Agrawal and R. Srikant in 1994 for mining

frequent itemsets for Boolean association rules. Apriori employs an iterative approach known

as a level-wise search, where k-itemsets are usedtoexplore (k+1)-itemsets. First, the setof

frequent 1-itemsets is found by scanning the database to accumulate the count for each item,

and collecting those items that satisfy minimum support. The resulting set is denoted

L1.Next, L1 is used to find L2, the set of frequent 2-itemsets, which is used to find L3, and so

on, until no more frequent k-itemsets can be found. The finding of each Lk requires one full

scan of the database.

Apriori Property:

1. It makes use of “Upward Closure property” (Any superset of infrequent itemset is

also an infrequent set). It follows Bottom-up search, moving upward level-wise in the

lattice.

2. It makes use of “downward closure property”(any subset of a frequent itemset is a

frequent itemset).

3. If Support of an itemset exceeds the support of its subsets, then it is known as the anti-

monotone property of support.

www.android.universityupdates.in | www.universityupdates.in | www.ios.universityupdates.in

www.android.previousquestionpapers.com | www.previousquestionpapers.com | www.ios.previousquestionpapers.com

UNIT-II

 DM Notes 4

2.2.1 Steps in candidate generation:

 Join Step: To find Lk, a set of candidate k-itemsets is generated by joining Lk-1 with

itself.

 Prune Step: Any k-itemset that is not frequent cannot be a subset of a frequent (k+1)-

itemset .

Based on the AllElectronics transaction database,D, of Table 5.1

2.2.2 Apriori algorithm steps for finding frequent itemsets in D:-

1. In the first iteration of the algorithm, each item is a member of the set of candidate 1-

itemsets, C1. The algorithm simply scans all of the transactions in order to count the

number of occurrences of each item.

2. Suppose that the minimum support count required is 2, that is, min sup = 2. The set of

frequent 1-itemsets, L1, can then be determined. It consists of the candidate 1-itemsets

satisfying minimum support.

3. To discover the set of frequent 2-itemsets, L2, the algorithm uses the join L1 L1 to

generate a candidate set of 2-itemsets, C2.

4. Next, the transactions inDare scanned and the support count of each candidate itemset

inC2 is accumulated, as shown in the middle table of the second row in Figure 5.2.

www.android.universityupdates.in | www.universityupdates.in | www.ios.universityupdates.in

www.android.previousquestionpapers.com | www.previousquestionpapers.com | www.ios.previousquestionpapers.com

UNIT-II

 DM Notes 5

5. The set of frequent 2-itemsets, L2, is then determined, consisting of those candidate

2-itemsets in C2 having minimum support.

6. The generation of the set of candidate 3-itemsets,C3, is detailed in Figure 5.3.

www.android.universityupdates.in | www.universityupdates.in | www.ios.universityupdates.in

www.android.previousquestionpapers.com | www.previousquestionpapers.com | www.ios.previousquestionpapers.com

UNIT-II

 DM Notes 6

7. The transactions in D are scanned in order to determine L3, consisting of those

candidate 3-itemsets in C3 having minimum support (Figure 5.2).

8. The algorithm uses L3 L3 to generate a candidate set of 4-itemsets, C4. Although

the join results in {I1, I2, I3, I5}, this itemset is pruned because its subset {I2, I3,I5} is not

frequent. Thus, C4 = f, and the algorithm terminates, having found all of

the frequent itemsets.

2.2.3 pseudo-code for the Apriori algorithm:-

www.android.universityupdates.in | www.universityupdates.in | www.ios.universityupdates.in

www.android.previousquestionpapers.com | www.previousquestionpapers.com | www.ios.previousquestionpapers.com

UNIT-II

 DM Notes 7

 2.2.4 How to Generate Candidates?

 Suppose the items in Lk-1 are listed in an order

 Step 1: self-joining Lk-1

insert into Ck

select p.item1, p.item2, …, p.itemk-1, q.itemk-1

from Lk-1 p, Lk-1 q

where p.item1=q.item1, …, p.itemk-2=q.itemk-2, p.itemk-1 < q.itemk-1

 Step 2: pruning

forall itemsets c in Ck do

forall (k-1)-subsets s of c do

if (s is not in Lk-1) then delete c from Ck

2.2.5 How to Count Supports of Candidates?

 Why counting supports of candidates a problem?

 The total number of candidates can be very huge

 One transaction may contain many candidates

 Method:

 Candidate itemsets are stored in a hash-tree

 Leaf node of hash-tree contains a list of itemsets and counts

 Interior node contains a hash table

 Subset function: finds all the candidates contained in a transaction

Example of Generating Candidates

 L3={abc, abd, acd, ace, bcd}

 Self-joining: L3*L3

 abcd from abc and abd

 acde from acd and ace

 Pruning:

 acde is removed because ade is not in L3

 C4={abcd}

2.2.6 Methods to Improve Apriori’s Efficiency

 Hash-based itemset counting: A k-itemset whose corresponding hashing

bucket count is below the threshold cannot be frequent

 Transaction reduction: A transaction that does not contain any frequent k-

itemset is useless in subsequent scans

www.android.universityupdates.in | www.universityupdates.in | www.ios.universityupdates.in

www.android.previousquestionpapers.com | www.previousquestionpapers.com | www.ios.previousquestionpapers.com

UNIT-II

 DM Notes 8

 Partitioning: Any itemset that is potentially frequent in DB must be

frequent in at least one of the partitions of DB

 Sampling: mining on a subset of given data, lower support threshold + a

method to determine the completeness

 Dynamic itemset counting: add new candidate itemsets only when all of

their subsets are estimated to be frequent

2.2.7 Is Apriori Fast Enough? — Performance

 The core of the Apriori algorithm:

 Use frequent (k – 1)-itemsets to generate candidate frequent k-

itemsets

 Use database scan and pattern matching to collect counts for the

candidate itemsets

 The bottleneck of Apriori: candidate generation

 Huge candidate sets:

 10
4
 frequent 1-itemset will generate 10

7
 candidate 2-itemsets

 To discover a frequent pattern of size 100, e.g., {a1, a2, …,

a100}, one needs to generate 2
100
 10

30
 candidates.

 Multiple scans of database:

 Needs (n +1) scans, n is the length of the longest pattern

2.3 FP-Tree Growth Algorithm :(Mining Frequent Patterns) Without

Candidate Generation

 Compress a large database into a compact, Frequent-Pattern tree (FP-

tree) structure

 highly condensed, but complete for frequent pattern mining

 avoid costly database scans

 Develop an efficient, FP-tree-based frequent pattern mining method

 A divide-and-conquer methodology: decompose mining tasks into

smaller ones

 Avoid candidate generation: sub-database test only!

2.3.1 Construct FP-tree from a Transaction DB

www.android.universityupdates.in | www.universityupdates.in | www.ios.universityupdates.in

www.android.previousquestionpapers.com | www.previousquestionpapers.com | www.ios.previousquestionpapers.com

UNIT-II

 DM Notes 9

Steps:

1. Scan DB once, find frequent 1-itemset (single item pattern)

2. Order frequent items in frequency descending order

3. Scan DB again, construct FP-tree

2.3.2 Benefits of the FP-tree Structure

 Completeness:

 never breaks a long pattern of any transaction

 preserves complete information for frequent pattern mining

 Compactness

 reduce irrelevant information—infrequent items are gone

www.android.universityupdates.in | www.universityupdates.in | www.ios.universityupdates.in

www.android.previousquestionpapers.com | www.previousquestionpapers.com | www.ios.previousquestionpapers.com

UNIT-II

 DM Notes 10

 frequency descending ordering: more frequent items are more

likely to be shared

 never be larger than the original database (if not count node-links

and counts)

 Example: For Connect-4 DB, compression ratio could be over 100

2.3.3 Mining Frequent Patterns Using FP-tree

 General idea (divide-and-conquer)

 Recursively grow frequent pattern path using the FP-tree

 Method

 For each item, construct its conditional pattern-base, and then its

conditional FP-tree

 Repeat the process on each newly created conditional FP-tree

 Until the resulting FP-tree is empty, or it contains only one path

(single path will generate all the combinations of its sub-paths,

each of which is a frequent pattern)

Step 1: From FP-tree to Conditional Pattern Base

 Starting at the frequent header table in the FP-tree

 Traverse the FP-tree by following the link of each frequent item

 Accumulate all of transformed prefix paths of that item to form a

conditional pattern base

Properties of FP-tree for Conditional Pattern Base Construction

 Node-link property

 For any frequent item ai, all the possible frequent patterns that

contain ai can be obtained by following ai's node-links, starting

from ai's head in the FP-tree header

www.android.universityupdates.in | www.universityupdates.in | www.ios.universityupdates.in

www.android.previousquestionpapers.com | www.previousquestionpapers.com | www.ios.previousquestionpapers.com

UNIT-II

 DM Notes 11

 Prefix path property

 To calculate the frequent patterns for a node ai in a path P, only the

prefix sub-path of ai in P need to be accumulated, and its

frequency count should carry the same count as node ai.

Step 2: Construct Conditional FP-tree

 For each pattern-base

 Accumulate the count for each item in the base

 Construct the FP-tree for the frequent items of the pattern base

2.3.4 Single FP-tree Path Generation

 Suppose an FP-tree T has a single path P

 The complete set of frequent pattern of T can be generated by

enumeration of all the combinations of the sub-paths of P

www.android.universityupdates.in | www.universityupdates.in | www.ios.universityupdates.in

www.android.previousquestionpapers.com | www.previousquestionpapers.com | www.ios.previousquestionpapers.com

UNIT-II

 DM Notes 12

2.3.5 Principles of Frequent Pattern Growth

 Pattern growth property

 Let be a frequent itemset in DB, B be 's conditional pattern

base, and be an itemset in B. Then is a frequent itemset

in DB iff is frequent in B.

 ―abcdef ‖ is a frequent pattern, if and only if

 ―abcde ‖ is a frequent pattern, and

 ―f ‖ is frequent in the set of transactions containing ―abcde ‖

2.3.6 Why Is Frequent Pattern Growth Fast?

 performance study shows

 FP-growth is an order of magnitude faster than Apriori, and is also

faster than tree-projection

 Reasoning

 No candidate generation, no candidate test

 Use compact data structure

 Eliminate repeated database scan

 Basic operation is counting and FP-tree building

2.3.7 FP-growth vs. Apriori: Scalability With the Support Threshold

0

10

20

30

40

50

60

70

80

90

100

0 0.5 1 1.5 2 2.5 3

Support threshold(%)

R
u

n
 t

im
e(

se
c.

)

D1 FP-grow th runtime

D1 Apriori runtime

www.android.universityupdates.in | www.universityupdates.in | www.ios.universityupdates.in

www.android.previousquestionpapers.com | www.previousquestionpapers.com | www.ios.previousquestionpapers.com

UNIT-II

 DM Notes 13

2.4 Compact Representation of Frequent Itemset

• Usually, huge number of frequent itemsets produced from transactional

dataset.

• It is useful to identify a small representative set of itemsets from which

all other frequent itemsets can be derived.

• There are two such representations

1. Maximal Frequent Itemsets:

 An itemset is maximal frequent if none of its

immediate supersets is frequent.

2. Closed Frequent Itemsets:

 An itemset is closed if none of it’s immediate

supersets has exactly the same support count .

 Closed itemsets provide a minimal representation of

itemsets without losing their support information.

2.5 Maximal Frequent Itemset

An itemset is maximal frequent if none of its immediate supersets is

frequent.

www.android.universityupdates.in | www.universityupdates.in | www.ios.universityupdates.in

www.android.previousquestionpapers.com | www.previousquestionpapers.com | www.ios.previousquestionpapers.com

UNIT-II

 DM Notes 14

2.6 Closed Frequent Itemsets

www.android.universityupdates.in | www.universityupdates.in | www.ios.universityupdates.in

www.android.previousquestionpapers.com | www.previousquestionpapers.com | www.ios.previousquestionpapers.com

UNIT-II

 DM Notes 15

www.android.universityupdates.in | www.universityupdates.in | www.ios.universityupdates.in

www.android.previousquestionpapers.com | www.previousquestionpapers.com | www.ios.previousquestionpapers.com

