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UNIT-II 

ASSOCIATION RULES 

2.1 Introduction: 

• ARM is to find out association rules or Frequent patterns or subsequences or 

correlation relationships among large set of data items that satisfy the predefined 

minimum support and confidence from a given database. 

• Frequent patterns are patterns (such as itemsets, subsequences, or substructures) that 

appear in a data set frequently. For example, a set of items, such as milk and bread, 

that appear frequently together in a transaction data set is a frequent itemset. A 

subsequence, such as buying first a PC, then a digital camera, and then a memory 

card, if it occurs frequently in a shopping history database, is a (frequent) sequential 

pattern. A substructure can refer to different structural forms, such as subgraphs, 

subtrees, or sublattices, which may be combined with itemsets or subsequences. 

 

What Is Association Mining? 

 

 Association rule mining: 

 Finding frequent patterns, associations, correlations, or causal structures 

among sets of items or objects in transaction databases, relational databases, 

and other information repositories. 

 Applications: 

 Basket data analysis, cross-marketing, catalog design, loss-leader analysis, 

clustering, classification, etc. 

 

 

2.1.1 Market Basket Analysis: 
 

Frequent itemset mining leads to the discovery of associations and correlations among items 

in large transactional or relational data sets. A typical example of frequent itemset mining is 

market basket analysis. This process analyzes customer buying habits by finding associations 

between the different items that customers place in their ―shopping baskets‖. The discovery 

of such associations can help retailers develop marketing strategies by gaining insight into 

which items are frequently purchased together by customers. 
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2.1.2 Frequent Itemsets, Closed Itemsets, and Association Rules 
 

Let I ={I1, I2, ... , Im} be a set of items. Let D, the task-relevant data, be a set of database 

transactions where each transaction T is a set of items such that T _ I . Each transaction is 

associated with an identifier, called TID. 

An association rule is an implication of the form  AB, where A I , B I , and AB=f. The 

rule AB holds in the transaction set D with support s, where s is the percentage of 

transactions in D that contain AB (i.e., the union of sets A and B, or say, both A and B). The 

rule A  B has confidence c in the transaction set D, where c is the percentage of 

transactions in D containing A that also contain B. This is taken to be the conditional 

probability, P(B|A). That is, 

 

 
If the relative support of an itemset I satisfies a prespecified minimum support threshold (i.e., 

the absolute support of I satisfies the corresponding minimum support count threshold), then I 

is a frequent itemset. The set of frequent k-itemsets is commonly denoted by Lk. 
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Support is used to eliminate uninteresting rules. Low support is likely to be uninteresting 

from a business perspective because it may not be profitable to promote items. 

 

Confidence measures the reliability of the inference made by a rule. For rule AB,  the 

higher confidence , the more likely it is for B to be present in transactions that contain A. It is 

used to estimate conditional probability of B given A.  

 

In general, association rule mining can be viewed as a two-step process: 

 

1. Find all frequent itemsets: By definition, each of these itemsets will occur at least as 

frequently as a predetermined minimum support count, min sup. 

2. Generate strong association rules from the frequent itemsets: By definition, these rules 

must satisfy minimum support and minimum confidence. 

 

2.2 The Apriori Algorithm: 
 

Apriori is a seminal algorithm proposed by R. Agrawal and R. Srikant in 1994 for mining 

frequent itemsets for Boolean association rules. Apriori employs an iterative approach known 

as a level-wise search, where k-itemsets are usedtoexplore (k+1)-itemsets. First, the setof 

frequent 1-itemsets is found by scanning the database to accumulate the count for each item, 

and collecting those items that satisfy minimum support. The resulting set is denoted 

L1.Next, L1 is used to find L2, the set of frequent 2-itemsets, which is used to find L3, and so 

on, until no more frequent k-itemsets can be found. The finding of each Lk requires one full 

scan of the database. 

 

Apriori Property: 
 

1. It makes use of “Upward Closure property” (Any superset of infrequent itemset is 

also an infrequent set). It follows Bottom-up search, moving upward level-wise in the 

lattice. 

2. It makes use of “downward closure property”(any subset of a frequent itemset is a 

frequent itemset). 

3. If Support of an itemset exceeds the support of its subsets, then it is known as the anti-

monotone property of support. 
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2.2.1 Steps in candidate generation: 
 

 Join Step: To find Lk, a set of candidate k-itemsets is generated by joining Lk-1 with 

itself. 

 Prune Step:  Any k-itemset that is not frequent cannot be a subset of a frequent (k+1)-

itemset . 

 
Based on the AllElectronics transaction database,D, of Table 5.1 
 

 

2.2.2 Apriori algorithm steps for finding frequent itemsets in D:- 

 

1. In the first iteration of the algorithm, each item is a member of the set of candidate 1-

itemsets, C1. The algorithm simply scans all of the transactions in order to count the 

number of occurrences of each item. 

2. Suppose that the minimum support count required is 2, that is, min sup = 2. The set of 

frequent 1-itemsets, L1, can then be determined. It consists of the candidate 1-itemsets 

satisfying minimum support. 

3. To discover the set of frequent 2-itemsets, L2, the algorithm uses the join L1  L1 to 

generate a candidate set of 2-itemsets, C2. 

4. Next, the transactions inDare scanned and the support count of each candidate itemset 

inC2 is accumulated, as shown in the middle table of the second row in Figure 5.2. 
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5. The set of frequent 2-itemsets, L2, is then determined, consisting of those candidate 

2-itemsets in C2 having minimum support. 

6. The generation of the set of candidate 3-itemsets,C3, is detailed in Figure 5.3. 
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7. The transactions in D are scanned in order to determine L3, consisting of those 

candidate 3-itemsets in C3 having minimum support (Figure 5.2). 

8.  The algorithm uses L3  L3 to generate a candidate set of 4-itemsets, C4. Although 

the join results in {I1, I2, I3, I5}, this itemset is pruned because its subset {I2, I3,I5} is not 

frequent. Thus, C4 = f, and the algorithm terminates, having found all of 

the frequent itemsets. 

 

2.2.3 pseudo-code for the Apriori algorithm:- 
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 2.2.4 How to Generate Candidates? 

 Suppose the items in Lk-1 are listed in an order 

 Step 1: self-joining Lk-1  

insert into Ck 

select p.item1, p.item2, …, p.itemk-1, q.itemk-1  

from Lk-1 p, Lk-1 q 

where p.item1=q.item1, …, p.itemk-2=q.itemk-2, p.itemk-1 < q.itemk-1 

 Step 2: pruning 

forall itemsets c in Ck do 

forall (k-1)-subsets s of c do 

if (s is not in Lk-1) then delete c from Ck  

 

2.2.5 How to Count Supports of Candidates? 

 

 Why counting supports of candidates a problem? 

 The total number of candidates can be very huge 

  One transaction may contain many candidates 

 Method: 

 Candidate itemsets are stored in a hash-tree 

 Leaf node of hash-tree contains a list of itemsets and counts 

 Interior node contains a hash table 

 Subset function: finds all the candidates contained in a transaction  

 

Example of Generating Candidates 

 

 L3={abc, abd, acd, ace, bcd} 

 Self-joining: L3*L3  

 abcd  from abc and abd  

 acde  from acd and ace 

 Pruning: 

 acde is removed because ade is not in L3 

 C4={abcd}  

 

2.2.6 Methods to Improve Apriori’s Efficiency 

 

 Hash-based itemset counting: A k-itemset whose corresponding hashing 

bucket count is below the threshold cannot be frequent 

 Transaction reduction: A transaction that does not contain any frequent k-

itemset is useless in subsequent scans 
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 Partitioning: Any itemset that is potentially frequent in DB must be 

frequent in at least one of the partitions of DB 

 Sampling: mining on a subset of given data, lower support threshold + a 

method to determine the completeness 

 Dynamic itemset counting: add new candidate itemsets only when all of 

their subsets are estimated to be frequent 

 

2.2.7 Is Apriori Fast Enough? — Performance  

 The core of the Apriori algorithm: 

 Use frequent (k – 1)-itemsets to generate candidate frequent k-

itemsets  

 Use database scan and pattern matching to collect counts for the 

candidate itemsets  

 The bottleneck of Apriori: candidate generation 

 Huge candidate sets: 

 10
4
 frequent 1-itemset will generate 10

7
 candidate 2-itemsets 

 To discover a frequent pattern of size 100, e.g., {a1, a2, …, 

a100}, one needs to generate 2
100 
 10

30
 candidates. 

 Multiple scans of database:  

 Needs (n +1 ) scans, n  is the length of the longest pattern 

 

2.3 FP-Tree Growth Algorithm :(Mining Frequent Patterns) Without 

Candidate Generation 

 

 Compress a large database into a compact,  Frequent-Pattern tree (FP-

tree) structure 

 highly condensed, but complete for frequent pattern mining 

 avoid costly database scans 

 Develop an efficient, FP-tree-based frequent pattern mining method 

 A divide-and-conquer methodology: decompose mining tasks into 

smaller ones 

 Avoid candidate generation: sub-database test only! 

 

2.3.1 Construct FP-tree from a Transaction DB 
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Steps: 

1. Scan DB once, find frequent 1-itemset (single item pattern) 

2. Order frequent items in frequency descending order 

3. Scan DB again, construct FP-tree 

 

 
 

2.3.2 Benefits of the FP-tree Structure 

 

 Completeness:  

 never breaks a long pattern of any transaction 

 preserves complete information for frequent pattern mining 

 Compactness 

 reduce irrelevant information—infrequent items are gone 
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 frequency descending ordering: more frequent items are more 

likely to be shared  

 never be larger than the original database (if not count node-links 

and counts) 

 Example: For Connect-4 DB, compression ratio could be over 100 

 

2.3.3 Mining Frequent Patterns Using FP-tree 

 

 General idea (divide-and-conquer) 

 Recursively grow frequent pattern path using the FP-tree 

 Method  

 For each item, construct its conditional pattern-base, and then its 

conditional FP-tree 

 Repeat the process on each newly created conditional FP-tree  

 Until the resulting FP-tree is empty, or it contains only one path 

(single path will generate all the combinations of its sub-paths, 

each of which is a frequent pattern) 

Step 1: From FP-tree to Conditional Pattern Base 

 

 Starting at the frequent header table in the FP-tree 

 Traverse the FP-tree by following the link of each frequent item 

 Accumulate all of transformed prefix paths of that item to form a 

conditional pattern base 

 

 
Properties of FP-tree for Conditional Pattern Base Construction 

 

 Node-link property 

 For any frequent item ai, all the possible frequent patterns that 

contain ai can be obtained by following ai's node-links, starting 

from ai's head in the FP-tree header 
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 Prefix path property 

 To calculate the frequent patterns for a node ai in a path P, only the 

prefix sub-path of ai in P  need to be accumulated, and its 

frequency count should carry the same count as node ai. 

 

Step 2: Construct Conditional FP-tree 

 

 For each pattern-base 

 Accumulate the count for each item in the base 

 Construct the FP-tree for the frequent items of the pattern base 

 

 
 

2.3.4 Single FP-tree Path Generation 

 

 Suppose an FP-tree T has a single path P 

 The complete set of frequent pattern of T can be generated by 

enumeration of all the combinations of the sub-paths of P 
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2.3.5 Principles of Frequent Pattern Growth 

 

 Pattern growth property 

 Let  be a frequent itemset in DB, B be 's conditional pattern 

base, and  be an itemset in B.  Then     is a frequent itemset 

in DB iff  is frequent in B.   

 ―abcdef ‖ is a frequent pattern, if and only if 

 ―abcde ‖ is a frequent pattern, and 

 ―f ‖ is frequent in the set of transactions containing ―abcde ‖ 

 

 

2.3.6 Why Is Frequent Pattern Growth Fast? 

 

  performance study shows 

 FP-growth is an order of magnitude faster than Apriori, and is also 

faster than tree-projection 

 Reasoning 

 No candidate generation, no candidate test 

 Use compact data structure 

 Eliminate repeated database scan 

 Basic operation is counting and FP-tree building 

 

2.3.7 FP-growth vs. Apriori: Scalability With the Support Threshold 
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2.4 Compact Representation of Frequent Itemset 

• Usually, huge number of frequent itemsets produced from transactional 

dataset. 

• It is useful to identify a small representative set of itemsets from which 

all other frequent itemsets can be derived. 

• There are two such representations 

1. Maximal Frequent Itemsets: 

 An itemset is maximal frequent if none of its 

immediate supersets is frequent.  

2. Closed Frequent Itemsets: 

 An itemset is closed if none of it’s immediate 

supersets has exactly the same support count . 

 Closed itemsets provide a minimal representation of 

itemsets without losing their support information. 

 

2.5 Maximal Frequent Itemset 

An itemset is maximal frequent if none of its immediate supersets is 

frequent.  
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2.6 Closed Frequent Itemsets 
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