UNIT-III

Classification

- Classification:
 - predicts categorical class labels
 - classifies data (constructs a model) based on the training set and the values (class labels) in a classifying attribute and uses it in classifying new data
- Prediction:
 - models continuous-valued functions, i.e., predicts unknown or missing values
- Typical Applications
 - credit approval
 - target marketing
 - medical diagnosis
 - treatment effectiveness analysis

Classification—A Two-Step Process

- Model construction: describing a set of predetermined classes
 - Each tuple/sample is assumed to belong to a predefined class, as determined by the class label attribute
 - The set of tuples used for model construction: training set
 - The model is represented as classification rules, decision trees, or mathematical formulae
- Model usage: for classifying future or unknown objects
 - Estimate accuracy of the model
 - The known label of test sample is compared with the classified result from the model
 - Accuracy rate is the percentage of test set samples that are correctly classified by the model
 - Test set is independent of training set, otherwise over-fitting will occur

Supervised vs. Unsupervised Learning

- Supervised learning (classification)
 - Supervision: The training data (observations, measurements, etc.) are accompanied by labels indicating the class of the observations
 - New data is classified based on the training set
- Unsupervised learning (clustering)
 - The class labels of training data is unknown
 - Given a set of measurements, observations, etc. with the aim of establishing the existence of classes or clusters in the data

Issues regarding classification and prediction (1): Data Preparation

- Data cleaning
 - Preprocess data in order to reduce noise and handle missing values
- Relevance analysis (feature selection)
 - Remove the irrelevant or redundant attributes
- Data transformation
 - Generalize and/or normalize data

Evaluating Classification Methods

- Predictive accuracy
- Speed and scalability
 - time to construct the model
 - time to use the model
- Robustness
 - handling noise and missing values
- Scalability
 - efficiency in disk-resident databases
- Interpretability:
 - understanding and insight provded by the model
- Goodness of rules
 - decision tree size
 - compactness of classification rules

Classification by Decision Tree Induction

- Decision tree
 - A flow-chart-like tree structure
 - Internal node denotes a test on an attribute

- Branch represents an outcome of the test
- Leaf nodes represent class labels or class distribution
- Decision tree generation consists of two phases
 - Tree construction
 - At start, all the training examples are at the root
 - Partition examples recursively based on selected attributes
 - Tree pruning
 - Identify and remove branches that reflect noise or outliers
- Use of decision tree: Classifying an unknown sample
 - Test the attribute values of the sample against the decision tree

Training Dataset

	age	income	student	credit_rating
This	<=30	high	no	fair
Follows	<=30	high	no	excellent
lonows	3140	high	no	fair
an	>40	medium	no	fair
example	>40	low	yes	fair
from	>40	low	yes	excellent
	3140	low	yes	excellent
Quinlan's	<=30	medium	no	fair
ID3	<=30	low	yes	fair
	>40	medium	yes	fair
	<=30	medium	yes	excellent
	3140	medium	no	excellent
	3140	high	yes	fair
	>40	medium	no	excellent

Output: A Decision Tree for "buys_computer"

Algorithm for Decision Tree Induction

- Basic algorithm (a greedy algorithm)
 - Tree is constructed in a top-down recursive divide-and-conquer manner
 - At start, all the training examples are at the root
 - Attributes are categorical (if continuous-valued, they are discretized in advance)
 - Examples are partitioned recursively based on selected attributes
 - Test attributes are selected on the basis of a heuristic or statistical measure (e.g., information gain)
- Conditions for stopping partitioning
 - All samples for a given node belong to the same class
 - There are no remaining attributes for further partitioning majority voting is employed for classifying the leaf
 - There are no samples left

Attribute Selection Measure

- Information gain (ID3/C4.5)
 - All attributes are assumed to be categorical
 - Can be modified for continuous-valued attributes
- Gini index (IBM IntelligentMiner)
 - All attributes are assumed continuous-valued
 - Assume there exist several possible split values for each attribute
 - May need other tools, such as clustering, to get the possible split values
 - Can be modified for categorical attributes

Information Gain (ID3/C4.5)

- Select the attribute with the highest information gain
- Assume there are two classes, *P* and *N*
 - Let the set of examples *S* contain *p* elements of class *P* and *n* elements of class *N*

The amount of information, needed to decide if an arbitrary example in S belongs to P or N is defined as

$$I(p,n) = -\frac{p}{p+n}\log_2\frac{p}{p+n} - \frac{n}{p+n}\log_2\frac{n}{p+n}$$

Information Gain in Decision Tree Induction

- Assume that using attribute A a set S will be partitioned into sets $\{S_1, S_2, ..., S_v\}$
 - If *S_i* contains *p_i* examples of *P* and *n_i* examples of *N*, the entropy, or the expected information needed to classify objects in all subtrees *S_i* is

$$E(A) = \sum_{i=1}^{\nu} \frac{p_i + n_i}{p + n} I(p_i, n_i)$$

■ The encoding information that would be gained by branching on A

$$Gain(A) = I(p, n) - E(A)$$

Attribute Selection by Information Gain Computation

- Class N: buys_computer = "no"
- I(p, n) = I(9, 5) =0.940

$$E(age) = \frac{5}{14}I(2,3) + \frac{4}{14}I(4,0) + \frac{5}{14}I(3,2) = 0.69$$

Hence

$$Gain(age) = I(p,n) - E(age)$$

Similarly

Gain(income) = 0.029Gain(student) = 0.151 $Gain(credit_rating) = 0.048$

Compute the entropy for *age*

age	р _і	n _i	I(p _i , n _i)
<=30	2	3	0.971
3040	4	0	0
>40	3	2	0.971

Gini Index (IBM IntelligentMiner)

■ If a data set *T* contains examples from *n* classes, gini index, *gini*(*T*) is defined as

where p_i is the relative frequency of class *j* in *T*.

If a data set T is split into two subsets T_1 and T_2 with sizes N_1 and N_2 respectively, the gini index of the split data contains examples from n classes, the gini index gini(T) is defined as

 $gini_{split}(T) = \frac{N_1}{N}gini(T_1) + \frac{N_2}{N}gini(T_2)$

The attribute provides the smallest gini_{split}(T) is chosen to split the node (need to enumerate all possible splitting points for each attribute).

Extracting Classification Rules from Trees

- Represent the knowledge in the form of IF-THEN rules
- One rule is created for each path from the root to a leaf
- Each attribute-value pair along a path forms a conjunction
- The leaf node holds the class prediction
- Rules are easier for humans to understand
- Example

IF age = "<=30" AND student = "no" THEN buys_computer = "no"

IF age = "<=30" AND student = "yes" THEN buys_computer = "yes"

IF age = "31...40" THEN buys_computer = "yes"

IF age = ">40" AND credit_rating = "excellent" THEN buys_computer = "yes"

```
IF age = ">40" AND credit_rating = "fair" THEN buys_computer = "no"
```

Avoid Overfitting in Classification

- The generated tree may overfit the training data
 - Too many branches, some may reflect anomalies due to noise or outliers
 - Result is in poor accuracy for unseen samples
- Two approaches to avoid overfitting
 - Prepruning: Halt tree construction early—do not split a node if this would result in the goodness measure falling below a threshold
 - Difficult to choose an appropriate threshold
 - Postpruning: Remove branches from a "fully grown" tree—get a sequence of progressively pruned trees

Use a set of data different from the training data to decide which is the "best pruned tree"

Approaches to Determine the Final Tree Size

- Separate training (2/3) and testing (1/3) sets
- Use cross validation, e.g., 10-fold cross validation
- Use all the data for training
 - but apply a statistical test (e.g., chi-square) to estimate whether expanding or pruning a node may improve the entire distribution
- Use minimum description length (MDL) principle:
 - halting growth of the tree when the encoding is minimized

Enhancements to basic decision tree induction

- Allow for continuous-valued attributes
 - Dynamically define new discrete-valued attributes that partition the continuous attribute value into a discrete set of intervals
- Handle missing attribute values
 - Assign the most common value of the attribute
 - Assign probability to each of the possible values
- Attribute construction
 - Create new attributes based on existing ones that are sparsely represented
 - This reduces fragmentation, repetition, and replication

Classification in Large Databases

- Classification—a classical problem extensively studied by statisticians and machine learning researchers
- Scalability: Classifying data sets with millions of examples and hundreds of attributes with reasonable speed
- Why decision tree induction in data mining?
 - relatively faster learning speed (than other classification methods)

- convertible to simple and easy to understand classification rules
- can use SQL queries for accessing databases
- comparable classification accuracy with other methods

Scalable Decision Tree Induction Methods in Data Mining Studies

- SLIQ (EDBT'96 Mehta et al.)
 - builds an index for each attribute and only class list and the current attribute list reside in memory
- SPRINT (VLDB'96 J. Shafer et al.)
 - constructs an attribute list data structure
- PUBLIC (VLDB'98 Rastogi & Shim)
 - integrates tree splitting and tree pruning: stop growing the tree earlier
- RainForest (VLDB'98 Gehrke, Ramakrishnan & Ganti)
 - separates the scalability aspects from the criteria that determine the quality of the tree
 - builds an AVC-list (attribute, value, class label)

Data Cube-Based Decision-Tree Induction

- Integration of generalization with decision-tree induction (Kamber et al'97).
- Classification at primitive concept levels
 - E.g., precise temperature, humidity, outlook, etc.
 - Low-level concepts, scattered classes, bushy classification-trees
 - Semantic interpretation problems.
- Cube-based multi-level classification
 - Relevance analysis at multi-levels.
 - Information-gain analysis with dimension + level.

Bayesian Classification

Probabilistic learning: Calculate explicit probabilities for hypothesis, among the most practical approaches to certain types of learning problems

- Incremental: Each training example can incrementally increase/decrease the probability that a hypothesis is correct. Prior knowledge can be combined with observed data.
- Probabilistic prediction: Predict multiple hypotheses, weighted by their probabilities
- Standard: Even when Bayesian methods are computationally intractable, they can provide a standard of optimal decision making against which other methods can be measured

Bayesian Theorem

■ Given training data *D*, *posteriori probability of a hypothesis h*, *P*(*h*/*D*) follows the Bayes theorem

$$P(h|D) = \frac{P(D|h)P(h)}{P(D)}$$

■ MAP (maximum posteriori) hypothesis

$$h_{MAP} \equiv \underset{h \in H}{\operatorname{arg\,max}} P(h|D) = \underset{h \in H}{\operatorname{arg\,max}} P(D|h)P(h).$$

Practical difficulty: require initial knowledge of many probabilities, significant computational cost

Naïve Bayes Classifier

A simplified assumption: attributes are conditionally independent:

$$P(\boldsymbol{C}_{j}|V) \propto P(\boldsymbol{C}_{j})\prod_{i=1}^{n}P(\boldsymbol{v}_{i}|\boldsymbol{C}_{j})$$

Greatly reduces the computation cost, only count the class distribution.

Given a training set, we can compute the probabilities

Outlook	Р	Ν	Humidity	Ρ	Ν
sunny	2/9	3/5	high	3/9	4/5
overcast	4/9	0	normal	6/9	1/5
rain	3/9	2/5			
Tempreature			Windy		
hot	2/9	2/5	true	3/9	3/5
mild	4/9	2/5	false	6/9	2/5
cool	3/9	1/5			

Bayesian classification

- The classification problem may be formalized using a-posteriori probabilities:
- P(C|X) = prob. that the sample tuple $X = \langle x_1, ..., x_k \rangle$ is of class C.
- E.g. P(class=N | outlook=sunny,windy=true,...)
- Idea: assign to sample X the class label C such that P(C|X) is maximal

Estimating a-posteriori probabilities

Bayes theorem:

$P(C \mid X) = P(X \mid C) \cdot P(C) / P(X)$

- P(X) is constant for all classes
- P(C) = relative freq of class C samples
- C such that P(C|X) is maximum = C such that P(X|C)·P(C) is maximum
- Problem: computing P(X|C) is unfeasible!

Naïve Bayesian Classification

■ Naïve assumption: attribute independence

 $P(x_1,...,x_k \,|\, C) = P(x_1 \,|\, C) \cdot ... \cdot P(x_k \,|\, C)$

- If i-th attribute is categorical:
 P(x_i|C) is estimated as the relative freq of samples having value x_i as i-th attribute in class C
- If i-th attribute is continuous:
 P(x_i|C) is estimated thru a Gaussian density function
- Computationally easy in both cases

Play-tennis example: estimating P(x_i|C)

						outlook	
						P(sunny p) = 2/9	P(sunny n) = 3/5
						P(overcast p) = 4/9	P(overcast n) = 0
						P(rain p) = 3/9	P(rain n) = 2/5
						temperature	
						P(hot p) = 2/9	P(hot n) = 2/5
	Outlook	Temperature	Humidity	Windy	Class	P(mild p) = 4/9	P(mild n) = 2/5
	sunny	hot	high	false	N	D(acclus) = 2/0	D(aaallm) = 1/F
	sunny	hot	high	true	N	P(coorp) = 3/9	P(coor n) = 1/5
	overcast	hot	high	false	Р	humidity	
	rain	mild	high	false	Р	nannarcy	
	rain	cool	normal	false	Р	P(high p) = 3/9	P(high n) = 4/5
	rain	cool	normal	true	N		
	overcast	cool	normal	true	Р	P(normal p) =	P(normal n) =
	sunny	mild	high	false	Ν	6/9	2/5
	sunny	cool	normal	false	Р		_/ -
	rain	mild	normal	false	Р	windy	
	sunny	mild	normal	true	Р	$D(t_{min}) = 2/0$	$D(t_{min}) = 2/E$
P(p) = 9/14	overcast	mild	high	true	Р	P(true p) = 3/9	P(true n) = 3/5
P(n) = 5/14	overcast	hot	normal	false	Р	P(false n) = 6/9	P(falseln) = 2/5
, 0,11	rain	mild	high	true	N	((abc)p) = 0/5	((1000)) = 2/3

Play-tennis example: classifying X

- An unseen sample X = <rain, hot, high, false>
- P(X|p)·P(p) = P(rain|p)·P(hot|p)·P(high|p)·P(false|p)·P(p) = 3/9·2/9·3/9·6/9·9/14 = 0.010582
- P(X|n)·P(n) = P(rain|n)·P(hot|n)·P(high|n)·P(false|n)·P(n) = 2/5·2/5·4/5·2/5·5/14 = 0.018286
- Sample X is classified in class n (don't play)

The independence hypothesis...

- ... makes computation possible
- ... yields optimal classifiers when satisfied
- ... but is seldom satisfied in practice, as attributes (variables) are often correlated.
- Attempts to overcome this limitation:
 - Bayesian networks, that combine Bayesian reasoning with causal relationships between attributes
 - Decision trees, that reason on one attribute at the time, considering most important attributes first

www.android.universityupdates.in | www.universityupdates.in | www.ios.universityupdates.in

Bayesian Belief Networks