
Lecture slides by

Dr.Capt. Ravindra Babu Kallam

Network Security

Unit - 2

 Symmetric key Ciphers:

 Block Cipher principles,

 DES,

 AES,

 Blowfish, RC5, IDEA,

 Block cipher operation,

 Stream ciphers, RC4

 Location of Encryption Devices

UNIT-2 Part-1

Topics to be covered:

Feistel Cipher Structure

 Horst Feistel of IBM devised the feistel cipher Structure in

1973.

 The input to the algorithm are a plaintext of length 2w bits

and a key K.

 The plain text block is divided in to 2 halves, L0 and R0.

 The two halves of the data pass through n rounds of

processing and then combined to produce the cipher text

block.

 Each round i has an inputs Li-1 and Ri-1, derived from the

previous round, as well as a sub key Ki, derived from the

overall K.

Symmetric key Ciphers:

Feistel Cipher Structure

Sub key generation
algorithm

Key

Block Cipher Design Principles:

 Block size: Larger block size means the greater security
but reduces the E/Decryption speed. Block size of 64 bit
is reasonable.

 Key size: Larger key size means the greater security but
reduces the E/Decryption speed. Most common key
length is 128 bits.

 Number of rounds: A single round offer inadequate
security but multiple rounds offer increasing security. A
typical size is 16 rounds.

 Sub key generation algorithm: Greater complexity in this
algorithm should lead greater difficulty of cryptanalysis.

 Round function: Greater complexity means greater
resistance to cryptanalysis.

 Fast software en/decryption: In many cases
encryption is embedded in applications or utility
functions in such a way as to preclude a hard ware
implementation. Accordingly the speed of the
execution of the algorithm becomes a concern.

 Ease of analysis: although we would like to make our
algorithm as difficult as possible to crypt analyze,
there is a great benefit in making the algorithm easy
to analyze.

Conventional Encryption Algorithms:

Data Encryption Standard (DES)

 Most widely used block cipher in world

 Adopted in 1977 by NBS (now NIST)

 Encrypts 64-bit data using 56-bit key

 Has widespread use

 The algorithm it self is referred to as a data
encryption algorithm (DEA).

DES Encryption Overview

 The left hand side of the figure shows that the processing

of the plain text proceeds in three phases.

 The 64 bit plaintext passes through an IP that rearranges the

bits to produce the permuted input.

 This is followed by a phase consisting of 16 iterations of the

same function.

The output of the last iteration consists of 64 bits that are a

function of the input plaintext and the key.

 The left and right halves of the output are swapped to produce

the pre output.

 Finally, the pre output is passed through a permutation IP-1 that

is inverse of the initial permutation function, to produce 64 bit

cipher text.

SINGLE ROUND OF DES ALGORITHM

DES S-BOXES

 There are 8 S- Boxes, each of them accepting a

6 bit input and producing 4 bit output

 The S-boxes are 4X16 tables and are used as

follows:

 The first and last bit of the input to the S box form a

2 bit binary number that selects the row of the S

box

 The middle four bits select the column of the S box

 The decimal value in the selected entry of the S box

is converted to its 4 bit binary representation to

produce the output.

DES S BOX VALUES

NSC by Dr.RBKallam

SIMPLIFIED DES:

 It was developed by Prof. Edward of Santa Clara
University.

 It has the similar properties and structure to DES with
much smaller parameters.

Overview:

 The fig below shows the overall structure of DES, which
we will refer to as S- DES.

 It takes an 8-bit block of plain text (ex: 10111101) and
a 10-bit key as input and produces an 8-bit block of
cipher text as output.

 The S-DES decryption algorithm takes an 8-bit block of
cipher text and the same 10 –bit key is used to produce
the 8_bit block of plain text.

NSC by RBKallam

The encryption algorithm involves 5 functions:

 Initial permutation IP

 Complex function fk, which involves both permutation
and substitution operations depends on a key input.

 A simple permutation function that switches (SW) the
two halves of the data.

 The function fk again.

 Finally a permutation function that is inverse of the initial
permutation (IP-1)

We can express the encryption algorithm function as:

Cipher text = IP-1 (fk2 (SW(fk1(IP (plaintext)))))

Where K1 = P8 (Shift (P10(Key)))

K2 = P8 (Shift (Shift (P10(Key))))

Decryption algorithm is the reverse of the encryption:

Plain text = IP (fk1 (SW(fk2(IP-1 (Ciphertext)))))

NSC BY DR R B KALLAM

IP

fk

SW

fk

IP-1

8 bit plaintext

8 bit ciphertext

IP

fk

SW

fk

IP-1

8 bit plaintext

8 bit ciphertext

P10

Shift

P8

Shift

P8
K2 K2

K1K1

ENCRYPTION DECRYPTION
10-bit key

Simplified DES Scheme

NSC by RBKallam

 Initial Permutation:

 The input to the algorithm is an 8 bit block plaintext, which

we first permute using the IP function.

 This retain all 8 bits of the plain text but mixes them up. At

the end of the algorithm, the inverse permutation is used:

 Hence, it can be written as IP-1 (IP(X)) = X

IP

2 6 3 1 4 8 5 7

IP-1

4 1 3 5 7 2 8 6

NSC by Dr.RBKallam

P4

E/P

S0 S1

IP

8 bit plaintext

4
4

4

4

2 2

44

8 8

P4

E/P

S0 S1

4
4

4

IP-1

2 2

44

8 8

SW

K1

K2

8 bit cipher text

fk

fk

S
im

p
li
fi

e
d

 D
E

S
 s

c
h

e
m

e

E
n

c
ry

p
ti

o
n

 D
e
ta

il
s

NSC by RBKallam

 The Function fk:

 The most complex component of S-DES is the function fk, which consists of a
combination of permutation and substitution.

 The function can be expressed as follows:

 fk(L,R) = (L F(R,SK),R)

where SK is a sub key and is the bit by bit exclusive –OR function.

Suppose the out put of IP stage in fig., is :

(10111101) and F(1101,SK) = 1110) for some key SK.

Then fk(10111101) = (01011101) because (1011) (1110) = 0101

We now describe the mapping F.

The input is a 4 – bit number (n1,n2n3n4).

The first operation is an expansion / permutation operation:

E / P

4 1 2 3 2 3 4 1

NSC by RBKallam

 The first 4 bits are fed in to the S – box S0 to

produce a 2- bit output, and the remaining 4

bits are fed in to the S1 to produce another

2 – bit output.

 These 2 boxes are defined as follows:

0 1 2 3

0 1 0 3 2

S0 = 1 3 2 1 0

2 0 2 1 3

3 3 1 3 2

0 1 2 3

0 0 1 2 3

S1 = 1 2 0 1 3

2 3 0 1 0

3 2 1 0 3

NSC by RBKallam

 The first and fourth input bits are treated as a 2 –
bit number that specify a row of the S- box, and
second and third input bits specify a column of the
S- box.

 The entry in the row and column in base two is the
2-bit output.

 Example, if (P00, P0,3) = (00)and (P01, P02) = (10)
then the out put is from row0 column 2 of S0,
which is 3, or binary (11).

 Similarly (P10, P1,3) and (P11, P12) are used to index
in to a row and column of S1 to produce an
additional 2 bits.

 The 4 bits produced by S0 and S1 undergo a
further permutation as follows:

P4

2 4 3 1

NSC by RBKallam

 Switch Function:

The function fk only alters the leftmost 4 bits

of the input. The switch function (SW)
interchanges the left and right 4 bits so that

the second instance of fk operates on a

different 4 bits.

 In the second instance the E/P,S0,S1 and
P4 functions are the same. The key input is
K2

NSC by RBKallam

KEY GENERATION FOR S – DES:

P10

LS-1

P8

P8

K2

K1

10-bit key

LS-1

LS-2 LS-2

8

8

5 5

55

5 5

NSC by RBKallam
 S- DES Key Generation

 S-DES depends on the use of a 10 bit key shared between sender and receiver.

 From this key two 8 bit sub keys are produced for use in particular stages of

E/Decryption algorithms.

 First, permute the key in the following fashion:

 Let the 10 bit key designated as (k1,k2,k3,k4,k5,k6,k7,k8,k9,k10).Then the

permutation P10 is defined as

 P10(k1,k2,k3,k4,k5,k6,k7,k8,k9,k10) = (k3,k5,k2,k7,k4,k10,k1,k9,k8,k6)

 P10 can be defined by the following display:

 This table is red from the left to right.

 Perform a circular left shift (LS-1) or rotation, separately on the first 5 bits and the second five

bits.

 Next apply P8, which picks out and permutes 8 of the 10 bits according to the following rule:

The result is K1 and apply the same to generate K2.

P10

3 5 2 7 4 10 1 9 8 6

P8

6 3 7 4 8 5 10 9

 Result 1:

 Enter the 10 digit integer number- 2 3 5 6 7 9 8 1 4 10

 After the Permutation P10: 5 7 3 8 6 10 2 4 1 9

 Key 1 is-------------------------> 2 8 4 6 1 5 10 9

 Key 2 is-------------------------> 1 5 9 7 10 3 4 2

 Result 2:

 Enter the 10 digit integer number- 5 6 7 8 9 1 2 3 4 10

 After the Permutation P10: 7 9 6 2 8 10 5 4 3 1

 Key 1 is-------------------------> 5 2 4 8 3 7 10 1

 Key 2 is-------------------------> 3 7 1 9 10 6 4 5

NSC by RBKallam

Strength of DES:

 It has 56-bit keys have 256 = 7.2 x 1016 values, brute force search looks hard,
because to perform 1 encryption/ us requires 1142 years.

 In July 1998, the Electronic Frontier Foundation (EFF) announced that it had
broken a new DES encryption using a special” DES cracker” machine that was
built for less than $2,50,000. The attack took less than three days. Hence, for
more security key length should be increased.

 It has 8 S-boxes, that are used in each iteration. The design criteria for these
boxes were not made public, there is a suspension that how the boxes were
constructed. Cryptanalysis is possible only when knows the weakness of S-box.

Triple-DES with Two-Keys

 Triple-DES with two keys is a popular
alternative to single-DES, but suffers from
being 3 times slower to run.

 It must use 3 encryptions

would seem to need 3 distinct keys

 but can use 2 keys with E-D-E sequence

C = EK1(DK2(EK1(P)))

 standardized in ANSI X9.17 & ISO8732

 no current known practical attacks

Triple encryption with 2 keys:

E E
P

K1 K1

B C

Encryption

D D
C

K1 K2

A P

Decryption

D

K2

A

EB

K1

Triple-DES with Three-Keys:

 Although, no practical attacks on two-key

Triple-DES, can use Triple-DES with Three-

Keys for more security

C = EK3(DK2(EK1(P)))

 It has been adopted by some Internet

applications, eg PGP, S/MIME, for greater

security.

International Data Encryption Algorithm
(IDEA):

 The IDEA is a symmetric block cipher algorithm
developed in 1991

 It uses 128 bit key and 64 bit block

 It is different from DES both in round function and in
the sub key generation function

 For the round function IDEA doesn't use S – boxes.
Rather it relies on three different mathematical
operations: XOR, binary addition of 16 bit integers
and binary multiplication of 16 bit integers.

 These functions are combined in such a way as to
produce a complex transformation that is very
difficult to analyze and hence to crypt analyze.

 The sub key generation algorithm relies completely
on the use of circular shift but uses these in a
complex way to generate a total of six sub keys for
each of the 8 rounds of IDEA.

 In each round it uses 6 keys, hence 6x8=48keys,
after 8th round it uses another 4 keys to generate
final output.

 IDEA is used in PGP and also in number of
commercial products.

IDEA KEY GENERATION

Blow fish:
 It was developed in 1993

 It is one of the most popular alternative to DES.

 It was designed to be easy to implement and to have a high
execution speed.

 It is also a very compact algorithm that can run in a less then 5k of
memory.

 It is a Block cipher algorithm and the Plain text Block size is 64 bits,

 It is a Symmetric key algorithm, It is a more secure then DES as
Key length is variable.

 Key length can be between 32 to 448 bits, default key length is
128bits, it uses 18 sub keys and are stored in P array(P[1] to P[18]).

 For a 32 bit key; In each array element there 8 digits in hexadecimal
format so that when we convert them into binary there will be
8x4=32 bits.

 It uses 16 rounds.

 It uses dynamic S-boxes that are generated as a function of the key,
XOR function, and binary addition.

 This is not suitable for applications in which the secrete key changes
frequently.

Structure of Function F

Structure of Blowfish algorithm

RC5:

It was developed in 1994

It do not follow classical Feistel Structure

RC5 (Rivest Cipher 5) is defined in RFC2040 and designed to have
the following characteristics:

 It is a symmetric key and Block cipher algorithm

 Suitable for hardware and software: it uses only a primitive
computational operations commonly found on
microprocessors.

 Fast: it a simple algorithm and is word oriented.

 Adaptable to processors of different word length: the number
of bits in a word (16,32,64,128) is a first parameter of RC5,
different word length yield different algorithms.

 Variable number of rounds:: The number of rounds (0 to
255) is second parameter of RC5 this allows a trade of
between speed and security.

 Variable length Key: It is third parameter of RC5. The range of
keys can be 0 to 255 Bytes,

 Simple: RC5 is having simple structure and easy to

implement.

 Low memory requirement: it makes RC5 suitable for smart

cards and other devices with restricted memory.

 High security: RC5 is intended to provide high security with

suitable parameters.

 Data dependent rotation: RC5 incorporate rotations(

circular bit shifts) whose amount is data dependent. This

strengthen the algorithm against cryptanalysis.

 RC5 is designated as RC5-w/r/b, Ex: RC5-32/12/16, i.e 2-32bit

words(2w) i.e 64 bit block size, 12 rounds and 16bytes (128bits) key.

 In each of the r rounds consist of

 A Substitution using both words of data

 A Permutation using both words of data

 A Substitution depends on the key

STREAM CIPHER

Stream cipher structure

 Stream cipher encrypts plaintext one byte at a time.

 As shown in the fig. a key is input to the

pseudorandom bit generator that produces a stream

of 8 bit numbers that are apparently random.

 A pseudorandom stream is one that is unpredictable

without knowledge of the input key.

 The output of the generator is called a Key stream, is

XORed one byte at a time with the one byte of plain

text stream to produce one byte at a time of cipher

stream.

Design considerations of the stream ciphers:

 The encryption sequence should have a larger period

because the pseudorandom number generator may

sometime produces the same key. The longer period of

repeat, it will be more difficult for cryptanalysis.

 The Key stream should have the properties of true random

number stream as close as possible. If the key stream is

treated as a stream of bytes, then all of the 256 possible

byte values should appear equally often.

 The more random appearing the key stream makes

cryptanalysis more difficult.

 If the key is larger as in block ciphers, then it will be more

difficult for the cryptanalysis. The desirable key length is 128

bits.

 Advantage of stream cipher With proper

design of PRNG: stream cipher is as secure

as block cipher. Stream cipher is faster than

block cipher.

 Disadvantage of stream cipher never reuse

the same key.

RC4

 Invented by Ron Rivest in 1987

 “RC” is “Ron’s Code” or “Rivest Cipher”

 It is a symmetric algorithm

 It is a variable key size stream cipher with byte
oriented operations.

 Generate key stream byte at a step.

 Efficient in software and simple.

 Used in many applications: SSL, TLS, etc.,

 Most popular stream cipher in existence.

 A variable length key from 1 to 256 bytes (8 to 2048bits) is
used to initialize a 256 byte state vector S, with elements
S[0],S[1],S[2],…..S[255].

 At all time S contains a permutation of all 8-bit numbers from
0 to 255.

 For encryption and decryption , byte ‘k’ is generated from S
by selecting one of the 255 entries in a systematic fashion.

 As each value of k is generated, the entries in S are once
again permuted.

 For encryption, k is XORed with the next byte of plain text and
for decryption k is XORed with the next byte of Cipher text.

Initialization of S:

 To begin, the entries of S are set equal to the values from 0 through 255 in

ascending order; that is, S[0] = 0, S[1] = 1, c,S[255] = 255 .

 A temporary vector, T, is also created. If the length of the key K is 256 bytes,

then K is transferred to T. Otherwise, for a key of length keylen bytes, the first

keylen elements of T are copied from K, and then K is repeated as many times

as necessary to fill out T.

 /* Initialization */

 for i = 0 to 255 do

 S[i] = i;

 T[i] = K[i mod keylen];

 Next we use T to produce the initial permutation of S. This involves starting with

S[0] and going through to S[255], and for each S[i], swapping S[i] with another

byte in S according to a scheme dictated by T[i]

 /* Initial Permutation of S */

 j = 0; for i = 0 to 255 do

 j = (j + S[i] + T[i]) mod 256;

 Swap (S[i], S[j]);

 Because the only operation on S is a swap, the only effect is a permutation. S

still contains all the numbers from 0 through 255.

Stream Generation:
 Once the S vector is initialized, the input key is no longer used. Stream

generation involves cycling through all the elements of S[i], and for each

S[i], swapping S[i] with another byte in S according to a scheme dictated by

the current configuration of S.

 After S[255] is reached, the process continues, starting over again at S[0]

 /* Stream Generation */

 i, j = 0;

 while (true) i = (i + 1) mod 256;

 j = (j + S[i]) mod 256;

 Swap (S[i], S[j]);

 t = (S[i] + S[j]) mod 256;

 k = S[t];

 To encrypt, XOR the value k with the next byte of plaintext. To decrypt, XOR

the value k with the next byte of ciphertext.

Cipher Block Modes of operations:

 Cipher Block Chaining (CBC)

 Cipher Feedback (CFB)

 Output Feedback (OFB)

 Counter (CTR) mode

Cipher Block Chaining (CBC)
 Message is broken into blocks

 Input to the encryption algorithm is the XOR of the current
plaintext block and the preceding cipher text block; the same
key is used for each block.

 To produce the first block of cipher, an IV is XORed with the
first block of plain text.

 On decryption, the IV is XORed with the output of the
decryption algorithm to recover the first block of plain text.

 Previous cipher block is chained with current plaintext block,
hence name.

C1 = EK(IV P1)

P1 = IV DK(C1)

 CBC is widely used in security applications, specially where
bulk data encryption, authentication is required.

Cipher Block Chaining (CBC)

Advantages and Limitations of CBC

 a cipher text block depends on all blocks before it.
any change to a block affects all following cipher
text blocks

 need Initialization Vector (IV)

 which must be known to sender & receiver

 if sent in clear, attacker can easily attack.

 hence IV must either be a fixed value or must be sent
encrypted before the rest of the message

Cipher Feed Back (CFB)

 Message is treated as a stream of bits. It also can operate in

real time mode.

 In this cipher text is of the same length of the plain text

 As in the CBC the unit of plain text are chained together, so
that the cipher text of any plain text is a function of all
preceding plaintext.

 Encryption: the input to the encryption function is a 64 bit
shift register that is initially set to some IV.

 The left most S bits of the output of the encryption function
are XORed with the first segment of the plain text P1 to
produce the first unit of cipher text C1, which is then
transmitted.

 In addition the content of the shift register are shifted left
by S bits and C1 is placed in the rightmost S bits of the
shift register. And this continue till the end of the plain text.

 Decryption: the same scheme is used, except that
the received cipher text unit is XORed with the
output of the encryption function to produce the
plain text unit.

 It allows any number of bit (1,8, 64 or 128 etc) to
be feedback

 denoted CFB-1, CFB-8, CFB-64, CFB-128 etc

 Most efficient to use all bits in block (64 or 128)

 Let MSBs(x) be defined as the most

significant S bits of X. Then

C1 = P1 MSBs[E(K,IV)] and

P1 = C1 MSBs[E(K,IV)]

Cipher Feed Back (CFB)

64 - s

64 - s

Advantages and Limitations of CFB

 Appropriate when data arrives in bits/bytes

 Most common stream mode

 It also can operate in real time mode

 It eliminates the need to pad a message to be an

integral number of blocks.

 Cipher text is of the same length of the plain text.

 errors propagate for several blocks after the error

OUTPUT FEEDBACK (OFB) MODE

 The output feedback (OFB) mode is similar in structure to that of CFB.

 For OFB, the output of the encryption function is fed back to become

the input for encrypting the next block of plaintext as shown in Figure.

 In CFB, the output of the XOR unit is fed back to become input for

encrypting the next block.

 The other difference is that the OFB mode operates on full blocks of

plaintext and ciphertext, whereas CFB operates on an s-bit subset.

 OFB encryption can be expressed as

Cj = Pj⊕ E(K, O j-1), where : O j-1 = E(K, O j-2)

Pj = Cj⊕ E(K, O j-1), where : O j-1 = E(K, O j-2)

Figure: W.r.f: CNS, Stallings 6th Edition

S bit Output Feedback Mode
W.r.f: CNS, Stallings 4th Edition

C1 = P1 ⊕ MSBs(E[K, IV])

P1 = C1 ⊕ MSBs(E[K, IV])

Disadvantage:

 As with CBC and CFB, the OFB mode requires an initialization vector. In the

case of OFB, the IV must be a nonce; that is, the IV must be unique to each

execution of the encryption operation.

 The reason for this is that the sequence of encryption output blocks, Oi, depends

only on the key and the IV and does not depend on the plaintext.

 Therefore, for a given key and IV, the stream of output bits used to XOR with

the stream of plaintext bits is fixed. If two different messages had an identical

block of plaintext in the identical position, then an attacker would be able to

determine that portion of the Oi stream.

Advantage:

 One advantage of the OFB method is that bit errors in transmission do not

propagate. For example, if a bit error occurs in C1, only the recovered value of

P1 is affected; subsequent plaintext units are not corrupted.

 With CFB, C1 also serves as input to the shift register and therefore causes

additional corruption downstream.

 The disadvantage of OFB is that it is more vulnerable to a message stream

modification attack than is CFB.

COUNTER (CTR) MODE

 A counter equal to the plaintext block size is used.

 The only requirement is that the counter value must be different for each

plaintext block that is encrypted.

 Typically, the counter is initialized to some value and then incremented by 1

for each subsequent block.

 For encryption, the counter is encrypted and then XORed with the plaintext

block to produce the ciphertext block; there is no chaining.

 For decryption, the same sequence of counter values is used, with each

encrypted counter XORed with a ciphertext block to recover the

corresponding plaintext block.

 Thus, the initial counter value must be made available for decryption. Given

a sequence of counters T1, T2, ….., TN, we can define CTR mode as follows.

Cj = Pj ⊕ E(K, Tj), Where: j = 1….N-1

Pj = Cj ⊕ E(K, Tj), where: j = 1….N-1

Location of Encryption Devices:

 In this each vulnerable communications link is equipped on
both ends with an encryption device. Thus, all traffic over all
communications links is secured.

 Although this requires a lot of encryption devices in a large
network, it provides a high level of security.

 One disadvantage of this approach is that the message must
be decrypted each time it enters a packet switch;

this is necessary because the switch must read the address in
the packet header to route the packet.

Thus, the message is vulnerable at each switch.

If this is a public packet-switching network, the user has no
Control over the security of the nodes.

Link Encryption:

Link Encryption

PSN

PSN

PSN

PSN

Packet

Switching

Network

- Encryption device

End-to-End encryption:

 With end-to-end encryption, the encryption process is
carried out at the two end systems. The source host or
terminal encrypts the data.

 The data, in encrypted form, are then transmitted
unaltered across the network to the destination terminal
or host.

 The Destination shares a key with the source and so is
able to decrypt the data.

 This approach would seem to secure the transmission
against attacks on the network links or switches.

End-to-End Encryption

PSN

PSN

PSN

PSN

Packet
Switching
Network

- Encryption device

 What part of each packet will the host encrypt?

 Suppose that the host encrypts the entire packet, including the header.
This will not work because, remember, only the other host can perform
the decryptions.

 The packet-switching node will receive an encrypted packet and be
unable to read the header.

 Therefore, it will not be able to route the packet. It follows that the host
may only encrypt the user data portion of the packet and must leave the
header in the clear, so that it can be read by the network.

 Thus, with end-to-end encryption, the user data are secure. However,
the traffic Pattern is not, because packet headers are transmitted in the
clear.

 To achieve greater security, both link and end-to-end encryptions are
needed.

Combined link and end-to-end encryptions

PSN

PSN

PSN

PSN

Packet

Switching

Network

Note: Ideally having both at once

end-to-end protects data contents over entire path and provides

authentication

link protects traffic flows from monitoring

Key Distribution

 symmetric schemes require both parties to share a
common secret key

 issue is how to securely distribute this key

 Given parties A and B have various key distribution
alternatives:

1. A can select key and physically deliver to B

2. third party can select & physically deliver key to A & B

3. if A & B have communicated previously can use previous
recent key to encrypt a new key

4. if A & B have secure communications with a third party C,
C can relay key between A & B

Aliac

KDC

Bob

Step 1
Step2 (K1) Step2 (K1)

R1

R4

R2

R3

R7R5

R6

Demonstration of the key distribution and

Secured transformation:

Key Hierarchy

 typically have a hierarchy of keys

 session key

 temporary key

 used for encryption of data between users

 for one logical session then discarded

 master key

 used to encrypt session keys

 shared by user & key distribution center

Key Distribution Scenario

Key Distribution Scenario

1. A issues a request to the KDC for a session key to protect a
logical connection to B.

The message includes (IDA//IDB//N1)the identity of A and B and
a unique identifier N1 , for this transaction, which we refer to as a
nonce or a random number.

2. The KDC responds with a message encrypted using Ka . The
message includes the following:

E(Ka [Ks // IDA//IDB//N1]) // E(Kb. [Ks//DA])

1. Intended for A:

• The one time session key, Ks ,to be used for this session

• The original request message, including the nonce, to enable A to match this
response with the appropriate request.

2. Intended for B:

 The one-time session key, Ks to be used for this session

 An identifier of A, IDA

The last two items are encrypted with Kb. They are to be sent to B to
establish the connection and prove A’s identity.

Key Distribution Scenario

3. A stores the session key for use in the up coming session

and forwards to B the information that originated at the

KDC for B, namely, E(Kb. [Ks // IDA])

4. Using the newly mentioned session key for encryption, B

sends a nonce, N2 to A.

5. Also using Ks, A responds with f(N2),where f is a function

that performs some transformation on N2

Key Distribution Issues

 hierarchies of KDC’s required for large networks,
but must trust each other

 session key lifetimes should be limited for greater
security

 use of automatic key distribution on behalf of
users, but must trust system (Ref:216 v4 tb)

 use of decentralized key distribution(Ref:217 v4 tb)

 controlling key usage

End Of The

2nd Unit Part-1

