
Indexing:
The main goal of designing the database is faster access
to any data in the database and quicker insert/delete/update
to any data.
In order to reduce the time spent in transactions, Indexes
are used. Indexes are similar to book catalogues in library
or even like an index in a book.
Indexing is a data structure technique which allows you
to quickly retrieve records from a database file.
An Index is a small table having only two columns.
The first column comprises a copy of the primary or
candidate key of a table.
Its second column contains a set of pointers for holding
the address of the disk block where that specific key value
stored

Types of Indexes

Primary Index
Primary Index is an ordered file which is fixed length size with two
fields. The first field is the same a primary key and second, filed is
pointed to that specific data block.
The primary Indexing in DBMS is also further divided into two
types.

Dense Index
Sparse Index

Dense Index:
In a dense index, a record is created for every search key valued in
the database.
This helps you to search faster but needs more space to store index
records.
In this Indexing, method records contain search key value and
points to the real record on the disk.

Sparse Index
It is an index record that appears for only some of the values in
the file.
In this method of indexing technique, a range of index columns
stores the same data block address, and when data needs to be
retrieved, the block address will be fetched.
It needs less space, less maintenance overhead for insertion, and
deletions .
but It is slower compared to the dense Index for locating records.

Clustered Indexing
Clustering index is defined on an ordered data file. The
data file is ordered on a non-key field.
In some cases, the index is created on non-primary key
columns which may not be unique for each record.
In such cases, in order to identify the records faster, we
will group two or more columns together to get the unique
values and create index out of them. This method is
known as clustering index.

Secondary Index:
Secondary index may be generated from a field which is a candidate
key and has a unique value in every record, or a non-key with
duplicate values.

Hash Based Indexing
Hashing is the technique of the database management system,
which directly finds the specific data location on the disk without
using the concept of index structure.
In the database systems, data is stored at the blocks whose data
address is produced by the hash function. That location of
memory where hash files stored these records is called as data
bucket or data block.

Terms used in Hashing:
Data Bucket: That location of memory where the hash file stored the
records. It is also referred to as a Unit of storage.
Key: A key in the Database Management system (DBMS) is a field or set
of fields that helps the relational database users to uniquely identify the
row/records of the database table.
Hash function: This mapping function matches all the set of search keys
to those addresses where the actual records are located. It is an easy
mathematics function.
Linear Probing: It is a concept in which the next available block of data is
used for inserting the new record instead of overwriting the older data
block.
Quadratic Probing: It is a method that helps users to determine or find
the address of a new data bucket.
Double Hashing: Double hashing is a computer programming method
used in hash tables to resolve the issues of has a collision.
Bucket Overflow: When a record is inserted, the address generated by the
hash function is not empty or data already exists in that address .This
critical situation is called bucket overflow.

There are mainly two types of SQL hashing methods:
•Static Hashing
•Dynamic Hashing
Static Hashing:
In the static hashing, the resultant data bucket address will always remain the
same.
Therefore, if you generate an address for say Student_ID = 10 using hashing
function mod(3), the resultant bucket address will always be 1. So, you will not see
any change in the bucket address.
Therefore, in this static hashing method, the number of data buckets in memory
always remains constant.
Static Hash Functions
Inserting a record: When a new record requires to be inserted into the table, you
can generate an address for the new record using its hash key. When the address is
generated, the record is automatically stored in that location.
Searching: When you need to retrieve the record, the same hash function should be
helpful to retrieve the address of the bucket where data should be stored.
Delete a record: Using the hash function, you can first fetch the record which is
you wants to delete. Then you can remove the records for that address in memory.

Suppose, latter if we want to insert 23, it produce hash value as 2 (
23 mod 7 = 2). But, in the above hash table, the location with hash
value 2 is not empty (it contains 16*). So, a collision occurs.
To resolve this collision, the following techniques are used.
1. Open Addressing
2. Closed Addressing

Static Hashing Example

Open Addressing:
Open addressing is a collision resolving technique which stores all the
keys inside the hash table. No key is stored outside the hash table.
Techniques used for open addressing are:
Linear Probing
Quadratic Probing
Double Hashing

Linear Probing
When a hash function generates at which data is already stored,

then the next bucket will be allocated to it.
 This mechanism is called Linear probing.

Example: Consider figure 1. When we try to insert 23, its hash value is 2. But the
slot with 2 is not empty. Then move to next slot (hash value 3), even it is also full,
then move once again to next slot with hash value 4. As it is empty store 23 there.
This is shown in the below diagram.

Quadratic Probing:
 In quadratic probing, when collision occurs, it compute new hash value by taking

the original hash value and adding successive values of quadratic polynomial until
an open slot is found. If here is a collision, it use the following hash function:
h(x) = (f(x) + i2) mod n , where I = 1, 2, 3, 4,….. and f(x) is initial hash value.

 Example: Consider figure 1. When we try to insert 23, its hash value is 2. But the
slot with hash value 2 is not empty. Then compute new hash value as (2 +12) mod
7 =3, even it is also full, and then once again compute new hash value as (2 +22)
mod 7 = 6. As it is empty store 23 there. This is shown in the below diagram.

Double Hashing
In double hashing, there are two hash functions. The second hash function
is used to provide an offset value in case the first function causes a collision.
The following function is an example of double hashing:

(firstHash(key) + i * secondHash(key)) % tableSize. Use i = 1, 2, 3, …
A popular second hash function is :

secondHash(key) = PRIME – (key % PRIME)
where PRIME is a prime smaller than the TABLE_SIZE

Example
 Consider figure 1. When we try to insert 23, its hash value is 2. But the
slot with hash value 2 is not empty. Then compute double hashing value as

secondHash (key) = PRIME – (key % PRIME) →
secondHash (23) = 5 – (23 % 5) = 2

Double hashing:
(firstHash(key) + i * secondHash(key)) % tableSize →
(2+1*2))%7 =4

As the slot with hash value 4 is empty, store 23 there. This is shown in the
below diagram

Closed Addressing or Seperate Chaining
To handle the collision, This technique creates a linked list to the
slot for which collision occurs. The new key is then inserted in the
linked list. These linked lists to the slots appear like chains.
So, this technique is called as separate chaining. It is also called
as closed addressing.

Dynamic Hashing
 The dynamic hashing method is used to overcome the problems of static

hashing like bucket overflow.
 In this method, data buckets grow or shrink as the records increases or

decreases. This method is also known as Extendable hashing method.
 This method makes hashing dynamic, i.e., it allows insertion or deletion

without resulting in poor performance.
How to search a key
First, calculate the hash address of the key.
Check how many bits are used in the directory, and these bits are called as i.
Take the least significant i bits of the hash address. This gives an index of
the directory.
Now using the index, go to the directory and find bucket address where the
record might be.
How to insert a new record
•Firstly, you have to follow the same procedure for retrieval, ending up in some
bucket.
•If there is still space in that bucket, then place the record in it.
•If the bucket is full, then we will split the bucket and redistribute the records.

Extendable hashing
In extendable hashing, a separate directory of pointers to buckets
is used. The number bits used in directory is called global depth (gd)
and number entries in directory = 2gd.
Number of bits used for locating the record in the buckets is
called local depth(ld) and each bucket can stores up to 2ld entries.
The hash function use last few binary bits of the key to find the
bucket.
If a bucket overflows, it splits, and if local depth greater than
global depth, then the table doubles in size.
It is one form of dynamic hashing

Example: Let global depth (gd) = 2. It means the directory
contains four entries. Let the local depth (ld) of each
bucket = 2. It means each bucket need two bits to perform
search operation. Let each Bucket capacity is four. Let us
insert 21, 15, 28, 17, 16, 13, 19, 12, 10, 24, 25 and 11.

INSERT 20* (binary 10100)

EXTRA SIMPLE Example:
Consider the following grouping of keys into buckets, depending on the
prefix of their hash address:

The last two bits of 2 and 4 are 00. So it will go into bucket B0.
The last two bits of 5 and 6 are 01, so it will go into bucket B1.
The last two bits of 1 and 3 are 10, so it will go into bucket B2.
The last two bits of 7 are 11, so it will go into B3.

Dynamic hashing

Insert key 9 with hash address 10001 into the above structure:
•Since key 9 has hash address 10001, it must go into the first bucket. But bucket B1
is full, so it will get split.
•The splitting will separate 5, 9 from 6 since last three bits of 5, 9 are 001, so it will
go into bucket B1, and the last three bits of 6 are 101, so it will go into bucket B5.
•Keys 2 and 4 are still in B0. The record in B0 pointed by the 000 and 100 entry
because last two bits of both the entry are 00.
•Keys 1 and 3 are still in B2. The record in B2 pointed by the 010 and 110 entry
because last two bits of both the entry are 10.
•Key 7 are still in B3. The record in B3 pointed by the 111 and 011 entry because last
two bits of both the entry are 11.

Linear Hashing
Linear hashing is a dynamic hashing technique that
linearly grows or shrinks number of buckets in a hash
file without a directory as used in Extendible Hashing.
It uses a family of hash functions instead of single hash
function.
This scheme utilizes a family of hash functions h0, h1,
h2, ... , with the property that each function's range is
twice that of its predecessor. That is, if hi maps a data
entry into one of N buckets, hi+1 maps a data entry into one
of 2N buckets. One example of such hash function family
can be obtained by:

where N is the initial number of buckets and i = 0,1,2,…

Initially it use N buckets labelled 0 through N–1 and an initial
hashing function h0(key) = key % N is used to map any key into
one of the N buckets.
For each overflow bucket, one of the buckets in serial order
will be splited and its content is redistributed between it and its
split image.
That is, for first time overflow in any bucket, bucket 0 will be
splited, for second time overflow in any bucket; bucket 1 will be
splited and so on.
When number of buckets becomes 2N, then this marks the end of
splitting round 0.
Hashing function h0 is no longer needed as all 2N buckets can
be addressed by hashing function h1.
In new round namely splitting-round 1, bucket split once again
starts from bucket 0. A new hash function h2 will be used. This
process is repeated when the hash file grows.

Example: Let N = 4, so we use 4 buckets and hash function
h0(key) = key % 4 is used to map any key into one of the
four buckets. Let us initially insert 4, 13, 19, 25, 14, 24, 15,
18, 23, 11, 16, 12 and 10.This is shown in the below figure.

Next, when 27 is inserted, an overflow occurs in bucket 3. So,
bucket 0 (first bucket) is splited and its content is distributed
between bucket 0 and new bucket. This is shown in below figure

Next, when 30, 31 and 34 is inserted, an overflow occurs in bucket
2. So, bucket 1 is splited and its content is distributed between
bucket 1 and new bucket. This is shown in below figure.

When 32, 35, 40 and 48 is inserted, an overflow occurs in
bucket 0. So, bucket 2 is splited and its content is
distributed between bucket 2 and new bucket. This is
shown in below figure.

When 26, 20 and 42 is inserted, an overflow occurs in bucket 0.
So, bucket 3 is splited and its content is distributed between bucket
3 and new bucket. This is shown in below figure.

This marks the end of splitting round. Hashing function h0 is no longer needed
as all 2N buckets can be addressed by hashing function h1. In new round
namely splitting-round 1, bucket split once again starts from bucket 0. A new hash
function h2 will be used. This process is repeated

.INTUITIONS FOR TREE INDEXES
We can use tree-like structures as index as well. For example, a
binary search tree(BST) can also be used as an index. If we want to find
out a particular record from a binary search tree, we have the added
advantage of binary search procedure, that makes searching be performed
even faster.
A binary tree can be considered as a 2-way Search Tree, because it
has two pointers in each of its nodes, thereby it can guide you to two
distinct ways. Remember that for every node storing 2 pointers, the
number of value to be stored in each node is one less than the number of
pointers, i.e. each node would contain 1 value each.
The above mentioned concept can be further expanded with the notion
of the m-Way Search Tree, where m represents the number of pointers
in a particular node. If m = 3, then each node of the search tree contains
3 pointers, and each node would then contain 2 values.
We use mainly two tree structure indexes in DBMS. They are:
 Indexed Sequential Access Methods (ISAM)
 B+ Tree

INDEXED SEQUENTIAL ACCESS METHODS (ISAM)
ISAM is a tree structure data that allows the DBMS to locate
particular record using index without having to search the entire
data set.
The records in a file are sorted according to the primary key and
saved in the disk.
For each primary key, an index value is generated and mapped
with the record. This index is nothing but the address of record.
A sorted data file according to primary index is called an
indexed sequential file.
The process of accessing indexed sequential file is called ISAM.
ISAM makes searching for a record in larger database is easy
and quick. But proper primary key has to be selected to make
ISAM efficient.
ISAM gives flexibility to generate index on other fields also in
addition to primary key fields.

ISAM contain three types of nodes:
Non-leaf nodes: They store the search index key values.
 Leaf nodes: They store the index of records.
 Overflow nodes: They also store the index of records but after
the leaf node is full.

On ISAM, we can perform search, insertion and deletion operations.
Search Operation: It follows binary search process. The record to
be searched will be available in the leaf nodes or in overflow nodes
only. The non-leaf nodes are used to search the value.
Insertion operation: First locate a leaf node where the insertion to
be take place (use binary search). After finding leaf node, insert it
in that leaf node if space is available, else create an overflow node
and insert the record index in it, and link the overflow node to the
leaf node.
Deletion operation: First locate a leaf node where the deletion to
be take place (use binary search). After finding leaf node, if the
value to be deleted is in leaf node or in overflow node, remove it. If
the overflow node is empty after removing the deleted value, then
delete overflow node also.

After inserting 24, 33, 36, and 39 in the above tree, it
looks like

Deletion: From the above figure, after deleting 42, 71, 24 and 36

B+ TREE
B+ Tree is an extension of Binary Tree which allows
efficient insertion, deletion and search operations. It is used
to implement indexing in DBMS. In B+ tree, data can be
stored only on the leaf nodes while internal nodes can store
the search key values.
1. B+ tree of an order m can store max m-1 values at each
node.
2. Each node can have a maximum of m children and at
least m/2 children (except root).
3. The values in each node are in sorted order.
4. All the nodes must contain at least half full except the
root node.
5. Only leaf nodes contain values and non-leaf nodes
contain search keys.

B+ Search:
Searching for a value in the B+-Tree always starts at the root node and
moves downwards until it reaches a leaf node. The search procedure
follows binary tree search procedure.
1. Read the value to be searched. Let us say this value as X.
2. Start the search process from root node
3. At each non-leaf node (including root node),
a. If all the values in the non-leaf node are greater than X, then move to its
first child
b. If all the values in the non-leaf node are less than or equal to X, then
move to its last child
c. If for any two consecutive values in the non-leaf node, left value is less
and right value greater than or equal to X, then move to the child node
whose pointer is in between these two consecutive values.
4. Repeat step-3 until a leaf node reaches.
5. At leaf node compare the key with the values in that node from left to
right. If the key value is found then display found. Otherwise display it is
not found.

B+ Insertion:
1. Apply search operation on B+ tree and find a leaf node where the
new value has to insert.
2. If the leaf node is not full, then insert the value in the leaf node.
3. If the leaf node is full, then Split that leaf node including newly
inserted value into two nodes such that each contains half of the
values (In case of odd, 2nd node contains extra value).
b. Insert smallest value from new right leaf node (2nd node) into
the parent node. Add pointers from these new leaf nodes to their
parent node.
c. If the parent is full, split it too. Add the middle key (In case of
even,1st value from 2nd part)of this parent node to its parent node.
d. Repeat until a parent is found that need not split.
4. If the root splits, create a new root which has one key and two
pointers

Example: Insert 1,5,3,7,9,2,4,6,8,10 into B+ tree of an order 4.
B+ tree of order 4 indicates there are maximum 3 values in a node

B+ Deletion
Identify the leaf node L from where deletion should take place.
Remove the data value to be deleted from the leaf node L
If L meets the "half full" criteria, then its done.
If L does not meets the "half full" criteria, then
If L's right sibling can give a data value, then move smallest value
in right sibling to L (After giving a data value, the right sibling
should satisfy the half full criteria. Otherwise it should not give)
Else, if L's left sibling can give a data value, then move largest
value in left sibling to L (After giving a data value, the left sibling
should satisfy the half full criteria. Otherwise it does not give)
Else, merge L and a sibling
If any internal nodes (including root) contain key value same as
deleted value, then delete those values and replace with it successor.
This deletion may propagate up to root. (If the changes propagate up
to root then tree height decreases).

INDEXES AND PERFORMANCE TUNING
Indexing is very important to execute DBMS query more efficiently. Adding
indexes to important tables is a regular part of performance tuning.
When we identify a frequently executed query that is scanning a table or causing
an expensive key lookup, then first consideration is if an index can solve this
problem. If yes add index for that table.
While indexes can improve query execution speed, the price we pay is on index
maintenance. Update and insert operations need to update the index with new data.
This means that writes will slow down slightly with each index we add to a table.
We also need to monitor index usage and identify when an existing index is no
longer needed. This allows us to keep our indexing relevant and trim enough to
ensure that we don’t waste disk space and I/O on write operations to any
unnecessary indexes.
To improve performance of the system, we need to do the following:
Identify the unused indexes and remove them.
Identify the minimally used indexes and remove them.
An index that is scanned more frequently, but rarely finds the required answer.
Modify the index to reach the answer.
Identify the indexes that are very similar and combine them.

