
UNIT –IV
Transaction Processing
ACID Properties
States of Transaction
Types of Schedules
Implementation Of Atomicity And Durability
Recoverability
Implementation Of Isolation

1.Transaction Processing
•A transaction is a logical unit of work of database processing that includes
one or more database access operations.
•A transaction can be defined as an action or series of actions that is
carried out by a single user or application program to perform
operations for accessing the contents of the database. The operations can
include retrieval, insertion, deletion and modification
•A transaction must be either completed or aborted.
•A transaction is a program unit whose execution may change the contents
of a database. It can either be embedded within an application program or
can be specified interactively via a high level query language such as SQL.
•If the database is in a consistent state before a transaction executes, then
the database should still be in consistent state after its execution.
•Therefore, to ensure these conditions and preserve the integrity of the
database transaction must be atomic (also called serializability).
•Atomic transaction is a transaction in which either all actions associated
with the transaction are executed to completion or none are performed.

Basic operations on database are read and write
1. read_item(X): Reads a database item named X into a program
variable. To simplify our notation, we assume that the program
variable is also named X.
2. write_item(X): Writes the value of program variable X into the
database item named X
Example:
You are working on a system for a bank. A customer goes to the
ATM and instructs it to transfer Rs. 1000 from savings to a
checking account.
This simple transaction requires two steps:
• Subtracting the money from the savings account balance.
Savings -1000
• Adding the money to the checking account balance.
Checking + 1000

The code to create this transaction will require two updates to the
database.
For example, there will be two SQL statements: one UPDATE
command to decrease the balance in savings and a second
UPDATE command to increase the balance in the checking
account.
You have to consider what would happen if a machine crashed
between these two operations. The money has already been
subtracted from the savings account will not be added to the checking
account. It is lost.
You might consider performing the addition to checking first, but
then the customer ends up with extra money, and the bank loses.
The point is that both changes must be made successfully.
Thus, a transaction is defined as a set of changes that must be made
together.

There are several reasons for a transaction to fail in the middle of
execution.
1. Computer failure: a hardware, software or network error occurs in the
computer system during transaction execution.
2. Transaction or system: some operations in the transaction may cause it to
fail such as integer overflow or division by 0. The user may also interrupt
the transaction during its execution
3. Local errors or exception conditions detected by the transaction :during
transaction execution , certain condition may occur that necessitate the
cancellation of transaction.
Example: insufficient account balance in a banking database may cause a
transaction to be cancelled.
4. Concurrency control enforcement: this method may decide to abort the
transaction because several transactions are in a state of deadlock.
5. Disk failure: some disk blocks may lose their data because of a disk
read/write head crash. This may happen during a read/ write operation of a
transaction.
6. Physical problem & catastrophes: this refers to an endless list of problems
that include fire, theft etc.

2. ACID PROPERTIES
 ACID properties are used for maintaining the integrity of database

during transaction processing.
 ACID stands for Atomicity, Consistency, Isolation, and Durability.
 Atomicity(All or nothing):-
 requires that all operations of a transaction be completed, if not, the

transaction is aborted
 In other words, a transaction is treated as single, individual logical

unit of work.
 Example: Transferring $100 from account A to account B. (Assume initially,

account A balance = $400 and account B balance = 700$.).
 Transferring $100 from account A to account B has two operations
 a) Debiting 100$ from A’s balance ($400 -$100 = $300)
 b) Crediting 100$ to B’s balance ($700+$100 = $800)
 Let’s say first operation (a) passed successfully while second (b) failed, in this

case A’s balance would be 300$ while B would be having 700$ instead of 800$.
This is unacceptable in a banking system.

 Either the transaction should fail without executing any of the operation or it
should process both the operations. The Atomicity property ensures that.

Consistency(No violation of integrity constraints):-
 every transaction sees a consistent database instance.
 In other words, execution of a transaction must leave a database

in either its prior stable state or a new stable state that reflects the
new modifications (updates) made by the transaction.

 For example, transferring funds from one account to another, the
consistency property ensures that the total values of funds in both
the accounts is the same before and end of the transaction.

 i.e., Assume initially, A balance = $400 and B balance = 700$.
 The total balance of A + B = 1100$ (Before transferring 100$

from A to B)
 The total balance of A + B = 1100$ (After transferring 100$ from

A to B)

 Isolation(concurrent changes invisibles):-
 the data used during the execution of a transaction cannot be used by a second transaction

until the first one is completed.
 This property isolates transactions from one another. In other words, if a transaction T1 is

being executed and is using the data item X, that data item cannot be accessed by any other
transaction (T2…Tn) until T1 ends.

For example,
 Transaction T1: Transfer 100$ from account A to account B
 Transaction T2: Transfer 150$ from account B to account C
 Assume initially, A balance = B balance = C balance = $1000

 After completion of Transaction T1 and T2, A balance = 900$, B balance = 1100$, C balance =1150$.
But B balance should be 950$. The B balance is wrong due to execution of T1 and T2 parallel and in
both the transactions, Account B is common. The last write in account B is at 10:05 AM, so that B
balance is 1100$ (write in account B at 10:04 AM is overwritten).

 Durability(committed update persist):-
 It states that the changes made by a transaction are permanent(the

database reaches a consistent state).
 They cannot be lost by either a system failure or by the erroneous

operation of a faulty transaction.

 For example, assume account A balance = 1000$. If A withdraw
100$ today, then the A balance = 900$. After two days or a month,
A balance should be 900$, if no other transactions done on A

3. STATES OF TRANSACTION
A transaction goes through many different states throughout its life
cycle. These states are called as transaction states. They are:

Active State:
 This is the first state in the life cycle of a transaction.
 Once the transaction starts executing, then it is said to be in active state.
 During this state it performs operations like READ and WRITE on some

data items. All the changes made by the transaction are now stored in the
buffer in main memory. They are not updated in database.

 From active state, a transaction can go into either a partially committed
state or a failed state.

Partially Committed State:
 When the transaction executes its last statement, then the transaction is

said to be in partially committed state.
 Still, all the changes made by the transaction are stored in the buffer in

main memory, but they are not updated in the database.
 From partially committed state, a transaction can go into one of two

states, a committed state or a failed state
Committed State:
 After all the changes made by the transaction have been successfully

updated in the database, it enters into a committed state and the
transaction is considered to be fully committed.

 After a transaction has entered the committed state, it is not possible to
roll back (undo) the transaction. This is because the system is updated
into a new consistent state and the changes are made permanent.

 The only way to undo the changes is by carrying out another transaction
called as compensating transaction that performs the reverse operations.

Failed State:
 When a transaction is getting executed in the active state or partially

committed state and some failure occurs due to which it becomes
impossible to continue the execution, it enters into a failed state.

Aborted State:
 After the transaction has failed and entered into a failed state, all the

changes made by it have to be undone.
 To undo the changes made by the transaction, it becomes necessary to

roll back the transaction.
 After the transaction has rolled back completely, it enters into an aborted

state.
Terminated State:
 This is the last state in the life cycle of a transaction.
 After entering the committed state or aborted state, the transaction finally

enters into a terminated state where its life cycle finally comes to an end.

4. TYPES OF SCHEDULES –
SERIALIZABILITY In DBMS, schedules may be classified as

Serial Schedules:
All the transactions execute serially one after the other.
When one transaction executes, no other transaction is allowed to

execute.

In schedule 1, after T1 completes its execution, transaction T2
executes. So, schedule-1 is a Serial Schedule.

Similarly, in schedule-2, after T2 completes its execution,
transaction T1 executes. So, schedule -2 is also an example of a
Serial Schedule.

Non-Serial Schedules:
In non-serial schedules, multiple transactions execute concurrently.
Operations of all/some of the transactions are inter-leaved or mixed

with each other.
Some non-serial schedules may lead to inconsistency of the

database and may produce wrong results

 In schedule-1 and schedule-2, the two transactions T1 and T2 executing
concurrently. The operations of T1 and T2 are interleaved. So, these schedules
are Non-Serial Schedule.

Serializable Schedules:
 A non-serial schedule of ‘n’ transactions is equivalent to some

serial schedule of ‘n’ transactions, then it is called as a serializable
schedule.

 In other words, the results produced by the transactions in a serial
schedule are equal to the result produced by the same transactions
in some non-serial schedule, then that non-serial schedule is called
as serializability.

 Serializable schedules behave exactly same as serial schedules.
 Even though, Serial Schedule and Serializable Schedule produce

same result, there are some differences they are

Serializability is mainly of two types. They are:
 Conflict Serializability
 View Serializability
Conflict Serializability:
 If a given non-serial schedule can be converted into a serial schedule by swapping

its non-conflicting operations, then it is called as a conflict serializable schedule.
 Two operations are called as conflicting operations if all the following conditions

hold true
(1) Both the operations belong to different transactions
(2) Both the operations are on the same data item
(3) At least one of the two operations is a write operation

In Schedule -1, only rule (1) & (2) are true, but rule (3) is not holding. So, the operations are
not conflict.
In Schedule -2, rule (1), (2) & (3) are true. So, the operations are conflict.
In Schedule -3, only rule (1) & (3) are true, but rule (2) is not holding. So, the operations are
not conflict.
In Schedule -4, rule (1), (2) & (3) are true. So, the operations are conflict.

Testing of Conflict Serializability:
Precedence Graph is used to test the Conflict

Serializability of a schedule. The algorithm to draw
precedence graph is

(1) Draw a node for each transaction in Schedule S.
(2) If Ta reads X value written by Tb, then draw arrow
from Tb → Ta.
(3) If Tb writes X value after it has been read by Ta, then
draw arrow from Ta → Tb.
(4) If Ta writes X after Tb writes X, then draw arrow from
Tb → Ta.
 If the precedence graph has no cycle, then Schedule S is known

as conflict serializable. If a precedence graph contains a cycle,
then S is not conflict serializable.

Problem-01: Check whether the given schedule S is conflict serializable or not.
S : R1(A) , R2(A) , R1(B) , R2(B) , R3(B) , W1(A) , W2(B)
Solution:
Given that S : R1(A) , R2(A) , R1(B) , R2(B) , R3(B) , W1(A) , W2(B) .
The schedule for the above operations is

List all the conflicting operations and determine the dependency between the
transactions
(Thumb rule to find conflict operations: For each Write(X) in Ta, make a pair with
each Read(X) and Write(X) in Tb. The order is important in each pair i.e., for
example, Read after Write on X or write after read on X in the given schedule.)
 R2(A) , W1(A) (T2 → T1)
 R1(B) , W2(B) (T1 → T2)
 R3(B) , W2(B) (T3 → T2)

There exists a cycle in the above graph. Therefore, the schedule
S is not conflict serializable.

Draw the precedence graph:

Problem-02: Check whether the given schedule S is conflict serializable schedule.

Solution: List all the conflicting operations to determine the dependency between
transactions.

Draw the precedence graph:

There exists no cycle in the precedence graph. Therefore, the
schedule S is conflict serializable

View Serializability:
View Serializability Definition: If a given schedule is view equivalent to some
serial schedule, then it is called as a view serializable schedule.
Two schedules S1 and S2 are said to be view equivalent if both of them
satisfy the following three rules:
(1) Initial Read: The first read operation on each data item in both the
schedule must be same.
 For each data item X, If first read on X is done by transaction Ta in

schedule S1, then in schedule2 also the first read on X must be done by
transaction Ta only.

(2) Updated Read: It should be same in both the schedules.
 If Read(X) of Ta followed by Write(X) of Tb in schedule S1, then in

schedule S2 also, Read(X) of Ta must follow Write(X) of Tb ..
(3) Final write: The final write operation on each data item in both the
schedule must be same.
 For each data item X, if X has been updated at last by transaction Ti in

schedule S1, then in schedule S2 also, X must be updated at last by
transaction Ti.

Problem 03: Check whether the given schedule S is view serializable or not

Conclusion: Hence, all the three rules are satisfied in this example, which means Schedule S1
and S2 are view equivalent. Also, it is proved that schedule S2 is the serial schedule of S1.
Thus we can say that the S1 schedule is a view serializable schedule.

5. IMPLEMENTATION OF ATOMICITYAND DURABILITY
 The recovery-management component of a DBMS supports

atomicity and durability by a variety of schemes. The simplest
scheme to implement it is Shadow copy.

Shadow copy: In shadow-copy scheme,
 A transaction that wants to update the database first creates a

complete copy of the database.
 All updates are done on the new database copy, leaving the

original copy, untouched.
 If at any point the transaction has to be aborted, the system simply

deletes the new copy. The old copy of the database has not been
affected

 If the transaction complete successfully, then the database system updates
the pointer db-pointer to point to the new copy of the database; the new
copy then becomes the original copy of the database.

 The old copy of the database is then deleted. Figure below depicts the
scheme, showing the database state before and after the update.

6. RECOVERABILITY
 During execution, if any of the transaction in a schedule is aborted,

then this may leads the database into inconsistence state.
 If anything goes wrong, then the completed operations in the

schedule needs to be undone.
 Sometimes, these undone operations may not possible. The

recoverability of schedule depends on undone operations.
If a transaction reads a data value that is updated by an

uncommitted transaction, then this type of read is called
as a dirty read.

i. Irrecoverable Schedule:
 In a schedule, if a transaction Ta performs a dirty read operation

from other transaction Tb and Ta commits before Tb then such a
schedule is known as an Irrecoverable Schedule

Example: Consider the following schedule

Here,
 T2 performs a dirty read operation
 T2 commits before T1.
 T1 fails later and roll backs.
 The value that T2 read now stands to be incorrect.
 T2 cannot recover since it has already committed.

ii. Recoverable Schedules:
 In a schedule, if a transaction Ta performs a dirty read operation

from other transaction Tb and Ta commit operation delayed till Tb
commit, then such a schedule is known as an recoverable
Schedule.

Example: Consider the following schedule-

Here,
T2 performs a dirty read operation.
The commit operation of T2 is delayed till T1 commits or roll backs.
T1 commits later.
T2 is now allowed to commit.
 In case, T1 would have failed, T2 has a chance to recover by rolling back.

Checking Whether a Schedule is Recoverable or
Irrecoverable:
Check if there exists any dirty read operation.
 If there does not exist any dirty read operation, then

the schedule is surely recoverable.
 If there exists any dirty read operation, then
 If the commit operation of the transaction performing

the dirty read occurs before the commit or abort
operation of the transaction which updated the value,
then the schedule is irrecoverable.

 If the commit operation of the transaction performing
the dirty read is delayed till the commit or abort
operation of the transaction which updated the value,
then the schedule is recoverable.

7. IMPLEMENTATION OF ISOLATION
 Isolation determines how transactions integrity is visible to other users

and systems. It means that a transaction should take place in a system
in such a way that it is the only one transaction that is accessing the
resources in a database system.

 Isolation level defines the degree to which a transaction must be isolated
from the data modifications made by any other transactions in the
database system.

 The phenomena’s used to define levels of isolation are:
a) Dirty Read b) Non-repeatable Read c) Phantom Read
Dirty Read: If a transaction reads a data value updated by an uncommitted
transaction, then this type of read is called as dirty read.

As T1 aborted, the results produced by T2 become wrong. This is because T2 read A
(Dirty Read) which is updated by T1.

Non-Repeatable Read:
Non repeatable read occurs when a transaction read same data

value twice and get a different value each time. It happens when a
transaction reads once before and once after committed UPDATES
from another transaction

First, T1 reads data item A and get A=10
Next, T2 writes data item A as A = 20
Last, T1 reads data item A and get A=20

Other example for Non-repeatable read:

T1: SELECT SUM(C) FROM STUDENT_DATA WHERE B=5; Answer is (10+20) = 30
T2: UPDATE STUDENT_DATA SET C = 15 WHERE A=100; Answer, in First row C changes to 15
T1: SELECT SUM(C) FROM STUDENT_DATA WHERE B=5; Answer is (15+20) = 35

Phantom reads: Phantom reads occurs when a transaction read same data value twice
and get a different value each time. It happens when a transaction reads once before and once
after committed INSERTS and/or DELETES from another transaction.

T1: SELECT SUM(C) FROM STUDENT_DATA WHERE B=5; Answer is (10+20) = 30
T2: INSERT INTO STUDENT_DATA VALUES(103, 5, 25);
Answer, in First row C changes to 15
T1: SELECT SUM(C) FROM STUDENT_DATA WHERE B=5; Answer is (10+20+25) = 55

Based on these three phenomena, SQL define four isolation levels. They are:
(1) Read uncommitted: This is the lowest level of isolation. In this level, one transaction

may read the data item modified by other transaction which is not committed. It mean
dirty read is allowed. In this level, transactions are not isolated from each other.

(2) Read Committed: This isolation level guarantees that any data read is committed at the
moment it is read. Thus, it does not allow dirty read. The transaction holds a read/write
lock on the data object, and thus prevents other transactions from reading, updating or
deleting it.

(3) Repeatable Read: This is the most restrictive isolation level. The transaction holds read
locks on all rows it references and writes locks on all rows it inserts, updates, or deletes.
Since other transaction cannot read, update or delete these rows, consequently it avoids
non-repeatable read. So other transactions cannot read, update or delete these data items.

(4) Serializable: This is the highest isolation level. A serializable execution is guaranteed to
be a serial schedule. Serializable execution is defined to be an execution of operations in
which concurrently executing transactions appears to be serially executing

The table given below clearly depicts the relationship between isolation levels and the read
phenomena and locks.

From the above table, it is clear that serializable isolation level is better than others

