
UNIT-IV

Transaction Processing
•A transaction is a logical unit of work of database processing that includes
one or more database access operations.

•A transaction can be defined as an action or series of actions that is
carried out by a single user or application program to perform
operations for accessing the contents of the database. The operations can
include retrieval, insertion, deletion and modification

•A transaction must be either completed or aborted.

•A transaction is a program unit whose execution may change the contents
of a database. It can either be embedded within an application program or
can be specified interactively via a high level query language such as SQL.

•If the database is in a consistent state before a transaction executes, then
the database should still be in consistent state after its execution.

•Therefore, to ensure these conditions and preserve the integrity of the
database transaction must be atomic (also called serializability).

•Atomic transaction is a transaction in which either all actions associated
with the transaction are executed to completion or none are performed.

Basic operations on database are read and write
1. read_item(X): Reads a database item named X into a program
variable. To simplify our notation, we assume that the program
variable is also named X.
2. write_item(X): Writes the value of program variable X into the
database item named X
Example:
You are working on a system for a bank. A customer goes to the
ATM and instructs it to transfer Rs. 1000 from savings to a
checking account.
This simple transaction requires two steps:
• Subtracting the money from the savings account balance.
Savings -1000
• Adding the money to the checking account balance.
Checking + 1000

The code to create this transaction will require two updates to the
database.
For example, there will be two SQL statements: one UPDATE
command to decrease the balance in savings and a second
UPDATE command to increase the balance in the checking
account.
You have to consider what would happen if a machine crashed
between these two operations. The money has already been
subtracted from the savings account will not be added to the checking
account. It is lost.
You might consider performing the addition to checking first, but
then the customer ends up with extra money, and the bank loses.
The point is that both changes must be made successfully.
Thus, a transaction is defined as a set of changes that must be made
together.

There are several reasons for a transaction to fail in the middle of
execution.
1. Computer failure: a hardware, software or network error occurs in the
computer system during transaction execution.
2. Transaction or system: some operations in the transaction may cause it to
fail such as integer overflow or division by 0. The user may also interrupt
the transaction during its execution
3. Local errors or exception conditions detected by the transaction :during
transaction execution , certain condition may occur that necessitate the
cancellation of transaction.
Example: insufficient account balance in a banking database may cause a
transaction to be cancelled.
4. Concurrency control enforcement: this method may decide to abort the
transaction because several transactions are in a state of deadlock.
5. Disk failure: some disk blocks may lose their data because of a disk
read/write head crash. This may happen during a read/ write operation of a
transaction.
6. Physical problem & catastrophes: this refers to an endless list of problems
that include fire, theft etc.

2. ACID PROPERTIES
 ACID properties are used for maintaining the integrity of database

during transaction processing.
 ACID stands for Atomicity, Consistency, Isolation, and Durability.
 Atomicity(All or nothing):-
 requires that all operations of a transaction be completed, if not, the

transaction is aborted
 In other words, a transaction is treated as single, individual logical

unit of work.
 Example: Transferring $100 from account A to account B. (Assume initially,

account A balance = $400 and account B balance = 700$.).
 Transferring $100 from account A to account B has two operations
 a) Debiting 100$ from A’s balance ($400 -$100 = $300)
 b) Crediting 100$ to B’s balance ($700+$100 = $800)
 Let’s say first operation (a) passed successfully while second (b) failed, in this

case A’s balance would be 300$ while B would be having 700$ instead of 800$.
This is unacceptable in a banking system.

 Either the transaction should fail without executing any of the operation or it
should process both the operations. The Atomicity property ensures that.

Consistency(No violation of integrity constraints):-
 every transaction sees a consistent database instance.
 In other words, execution of a transaction must leave a database

in either its prior stable state or a new stable state that reflects the
new modifications (updates) made by the transaction.

 For example, transferring funds from one account to another, the
consistency property ensures that the total values of funds in both
the accounts is the same before and end of the transaction.

 i.e., Assume initially, A balance = $400 and B balance = 700$.
 The total balance of A + B = 1100$ (Before transferring 100$

from A to B)
 The total balance of A + B = 1100$ (After transferring 100$ from

A to B)

 Isolation(concurrent changes invisibles):-
 the data used during the execution of a transaction cannot be used by a second transaction

until the first one is completed.
 This property isolates transactions from one another. In other words, if a transaction T1 is

being executed and is using the data item X, that data item cannot be accessed by any other
transaction (T2…Tn) until T1 ends.

For example,
 Transaction T1: Transfer 100$ from account A to account B
 Transaction T2: Transfer 150$ from account B to account C
 Assume initially, A balance = B balance = C balance = $1000

 After completion of Transaction T1 and T2, A balance = 900$, B balance = 1100$, C balance =1150$.
But B balance should be 950$. The B balance is wrong due to execution of T1 and T2 parallel and in
both the transactions, Account B is common. The last write in account B is at 10:05 AM, so that B
balance is 1100$ (write in account B at 10:04 AM is overwritten).

 Durability(committed update persist):-
 It states that the changes made by a transaction are permanent(the

database reaches a consistent state).
 They cannot be lost by either a system failure or by the erroneous

operation of a faulty transaction.

 For example, assume account A balance = 1000$. If A withdraw
100$ today, then the A balance = 900$. After two days or a month,
A balance should be 900$, if no other transactions done on A

STATES OF TRANSACTION
A transaction goes through many different states throughout its life
cycle. These states are called as transaction states. They are:

Active State:
 This is the first state in the life cycle of a transaction.
 Once the transaction starts executing, then it is said to be in active state.
 During this state it performs operations like READ and WRITE on some

data items. All the changes made by the transaction are now stored in the
buffer in main memory. They are not updated in database.

 From active state, a transaction can go into either a partially committed
state or a failed state.

Partially Committed State:
 When the transaction executes its last statement, then the transaction is

said to be in partially committed state.
 Still, all the changes made by the transaction are stored in the buffer in

main memory, but they are not updated in the database.
 From partially committed state, a transaction can go into one of two

states, a committed state or a failed state
Committed State:
 After all the changes made by the transaction have been successfully

updated in the database, it enters into a committed state and the
transaction is considered to be fully committed.

 After a transaction has entered the committed state, it is not possible to
roll back (undo) the transaction. This is because the system is updated
into a new consistent state and the changes are made permanent.

 The only way to undo the changes is by carrying out another transaction
called as compensating transaction that performs the reverse operations.

Failed State:
 When a transaction is getting executed in the active state or partially

committed state and some failure occurs due to which it becomes
impossible to continue the execution, it enters into a failed state.

Aborted State:
 After the transaction has failed and entered into a failed state, all the

changes made by it have to be undone.
 To undo the changes made by the transaction, it becomes necessary to

roll back the transaction.
 After the transaction has rolled back completely, it enters into an aborted

state.
Terminated State:
 This is the last state in the life cycle of a transaction.
 After entering the committed state or aborted state, the transaction finally

enters into a terminated state where its life cycle finally comes to an end.

TYPES OF SCHEDULES –
SERIALIZABILITY In DBMS, schedules may be classified as

Serial Schedules:
All the transactions execute serially one after the other.
When one transaction executes, no other transaction is allowed to

execute.

In schedule 1, after T1 completes its execution, transaction T2
executes. So, schedule-1 is a Serial Schedule.

Similarly, in schedule-2, after T2 completes its execution,
transaction T1 executes. So, schedule -2 is also an example of a
Serial Schedule.

Non-Serial Schedules:
In non-serial schedules, multiple transactions execute concurrently.
Operations of all/some of the transactions are inter-leaved or mixed

with each other.
Some non-serial schedules may lead to inconsistency of the

database and may produce wrong results

 In schedule-1 and schedule-2, the two transactions T1 and T2 executing
concurrently. The operations of T1 and T2 are interleaved. So, these schedules
are Non-Serial Schedule.

Serializable Schedules:
 A non-serial schedule of ‘n’ transactions is equivalent to some

serial schedule of ‘n’ transactions, then it is called as a serializable
schedule.

 In other words, the results produced by the transactions in a serial
schedule are equal to the result produced by the same transactions
in some non-serial schedule, then that non-serial schedule is called
as serializability.

 Serializable schedules behave exactly same as serial schedules.
 Even though, Serial Schedule and Serializable Schedule produce

same result, there are some differences they are

Serializability is mainly of two types. They are:
 Conflict Serializability
 View Serializability
Conflict Serializability:
 If a given non-serial schedule can be converted into a serial schedule by swapping

its non-conflicting operations, then it is called as a conflict serializable schedule.
 Two operations are called as conflicting operations if all the following conditions

hold true
(1) Both the operations belong to different transactions
(2) Both the operations are on the same data item
(3) At least one of the two operations is a write operation

In Schedule -1, only rule (1) & (2) are true, but rule (3) is not holding. So, the operations are
not conflict.
In Schedule -2, rule (1), (2) & (3) are true. So, the operations are conflict.
In Schedule -3, only rule (1) & (3) are true, but rule (2) is not holding. So, the operations are
not conflict.
In Schedule -4, rule (1), (2) & (3) are true. So, the operations are conflict.

Testing of Conflict Serializability:
Precedence Graph is used to test the Conflict

Serializability of a schedule. The algorithm to draw
precedence graph is

(1) Draw a node for each transaction in Schedule S.
(2) If Ta reads X value written by Tb, then draw arrow
from Tb → Ta.
(3) If Tb writes X value after it has been read by Ta, then
draw arrow from Ta → Tb.
(4) If Ta writes X after Tb writes X, then draw arrow from
Tb → Ta.
 If the precedence graph has no cycle, then Schedule S is known

as conflict serializable. If a precedence graph contains a cycle,
then S is not conflict serializable.

Problem-01: Check whether the given schedule S is conflict serializable or not.
S : R1(A) , R2(A) , R1(B) , R2(B) , R3(B) , W1(A) , W2(B)
Solution:
Given that S : R1(A) , R2(A) , R1(B) , R2(B) , R3(B) , W1(A) , W2(B) .
The schedule for the above operations is

List all the conflicting operations and determine the dependency between the
transactions
(Thumb rule to find conflict operations: For each Write(X) in Ta, make a pair with
each Read(X) and Write(X) in Tb. The order is important in each pair i.e., for
example, Read after Write on X or write after read on X in the given schedule.)
 R2(A) , W1(A) (T2 → T1)
 R1(B) , W2(B) (T1 → T2)
 R3(B) , W2(B) (T3 → T2)

There exists a cycle in the above graph. Therefore, the schedule
S is not conflict serializable.

Draw the precedence graph:

Problem-02: Check whether the given schedule S is conflict serializable schedule.

Solution: List all the conflicting operations to determine the dependency between
transactions.

Draw the precedence graph:

There exists no cycle in the precedence graph. Therefore, the
schedule S is conflict serializable

View Serializability:
View Serializability Definition: If a given schedule is view equivalent to some
serial schedule, then it is called as a view serializable schedule.
Two schedules S1 and S2 are said to be view equivalent if both of them
satisfy the following three rules:
(1) Initial Read: The first read operation on each data item in both the
schedule must be same.
 For each data item X, If first read on X is done by transaction Ta in

schedule S1, then in schedule2 also the first read on X must be done by
transaction Ta only.

(2) Updated Read: It should be same in both the schedules.
 If Read(X) of Ta followed by Write(X) of Tb in schedule S1, then in

schedule S2 also, Read(X) of Ta must follow Write(X) of Tb ..
(3) Final write: The final write operation on each data item in both the
schedule must be same.
 For each data item X, if X has been updated at last by transaction Ti in

schedule S1, then in schedule S2 also, X must be updated at last by
transaction Ti.

Problem 03: Check whether the given schedule S is view serializable or not

Conclusion: Hence, all the three rules are satisfied in this example, which means Schedule S1
and S2 are view equivalent. Also, it is proved that schedule S2 is the serial schedule of S1.
Thus we can say that the S1 schedule is a view serializable schedule.

IMPLEMENTATION OF ATOMICITY AND DURABILITY
 The recovery-management component of a DBMS supports

atomicity and durability by a variety of schemes. The simplest
scheme to implement it is Shadow copy.

Shadow copy: In shadow-copy scheme,
 A transaction that wants to update the database first creates a

complete copy of the database.
 All updates are done on the new database copy, leaving the

original copy, untouched.
 If at any point the transaction has to be aborted, the system simply

deletes the new copy. The old copy of the database has not been
affected

 If the transaction complete successfully, then the database system updates
the pointer db-pointer to point to the new copy of the database; the new
copy then becomes the original copy of the database.

 The old copy of the database is then deleted. Figure below depicts the
scheme, showing the database state before and after the update.

RECOVERABILITY
 During execution, if any of the transaction in a schedule is aborted,

then this may leads the database into inconsistence state.
 If anything goes wrong, then the completed operations in the

schedule needs to be undone.
 Sometimes, these undone operations may not possible. The

recoverability of schedule depends on undone operations.
If a transaction reads a data value that is updated by an

uncommitted transaction, then this type of read is called
as a dirty read.

Irrecoverable Schedule:
 In a schedule, if a transaction Ta performs a dirty read operation

from other transaction Tb and Ta commits before Tb then such a
schedule is known as an Irrecoverable Schedule

Example: Consider the following schedule

Here,

 T2 performs a dirty read operation
 T2 commits before T1.
 T1 fails later and roll backs.
 The value that T2 read now stands to be incorrect.
 T2 cannot recover since it has already committed.

Recoverable Schedules:
 In a schedule, if a transaction Ta performs a dirty read operation

from other transaction Tb and Ta commit operation delayed till Tb
commit, then such a schedule is known as an recoverable
Schedule.

Example: Consider the following schedule-

Here,
T2 performs a dirty read operation.
The commit operation of T2 is delayed till T1 commits or roll backs.
T1 commits later.
T2 is now allowed to commit.
 In case, T1 would have failed, T2 has a chance to recover by rolling back.

Checking Whether a Schedule is Recoverable or
Irrecoverable:
Check if there exists any dirty read operation.
 If there does not exist any dirty read operation, then the

schedule is surely recoverable.
 If there exists any dirty read operation, then
 If the commit operation of the transaction performing

the dirty read occurs before the commit or abort
operation of the transaction which updated the value,
then the schedule is irrecoverable.

 If the commit operation of the transaction performing
the dirty read is delayed till the commit or abort
operation of the transaction which updated the value,
then the schedule is recoverable.

IMPLEMENTATION OF ISOLATION
 Isolation determines how transactions integrity is visible to other users

and systems. It means that a transaction should take place in a system
in such a way that it is the only one transaction that is accessing the
resources in a database system.

 Isolation level defines the degree to which a transaction must be isolated
from the data modifications made by any other transactions in the
database system. The phenomena’s used to define levels of isolation are:

a) Dirty Read b) Non-repeatable Read c) Phantom Read
Dirty Read: If a transaction reads a data value updated by an uncommitted
transaction, then this type of read is called as dirty read.

As T1 aborted, the results produced by T2 become wrong. This is because T2 read A
(Dirty Read) which is updated by T1.

Non-Repeatable Read:
Non repeatable read occurs when a transaction read same data

value twice and get a different value each time. It happens when a
transaction reads once before and once after committed UPDATES
from another transaction

First, T1 reads data item A and get A=10
Next, T2 writes data item A as A = 20
Last, T1 reads data item A and get A=20

Other example for Non-repeatable read:

T1: SELECT SUM(C) FROM STUDENT_DATA WHERE B=5; Answer is (10+20) = 30
T2: UPDATE STUDENT_DATA SET C = 15 WHERE A=100; Answer, in First row C changes to 15
T1: SELECT SUM(C) FROM STUDENT_DATA WHERE B=5; Answer is (15+20) = 35

Phantom reads: Phantom reads occurs when a transaction read same data value twice
and get a different value each time. It happens when a transaction reads once before and once
after committed INSERTS and/or DELETES from another transaction.

T1: SELECT SUM(C) FROM STUDENT_DATA WHERE B=5; Answer is (10+20) = 30
T2: INSERT INTO STUDENT_DATA VALUES(103, 5, 25);
Answer, in First row C changes to 15
T1: SELECT SUM(C) FROM STUDENT_DATA WHERE B=5; Answer is (10+20+25) = 55

Based on these three phenomena, SQL define four isolation levels. They are:
(1) Read uncommitted: This is the lowest level of isolation. In this level, one transaction

may read the data item modified by other transaction which is not committed. It mean
dirty read is allowed. In this level, transactions are not isolated from each other.

(2) Read Committed: This isolation level guarantees that any data read is committed at the
moment it is read. Thus, it does not allow dirty read. The transaction holds a read/write
lock on the data object, and thus prevents other transactions from reading, updating or
deleting it.

(3) Repeatable Read: This is the most restrictive isolation level. The transaction holds read
locks on all rows it references and writes locks on all rows it inserts, updates, or deletes.
Since other transaction cannot read, update or delete these rows, consequently it avoids
non-repeatable read. So other transactions cannot read, update or delete these data items.

(4) Serializable: This is the highest isolation level. A serializable execution is guaranteed to
be a serial schedule. Serializable execution is defined to be an execution of operations in
which concurrently executing transactions appears to be serially executing

The table given below clearly depicts the relationship between isolation levels and the read
phenomena and locks.

From the above table, it is clear that serializable isolation level is better than others

CONCURRENCY CONTROL
 Concurrency is the ability of a database to execute multiple

transactions simultaneously.
 Concurrency control is a mechanism to manage the simultaneously

executing multiple transactions such that no transaction interfere with
other transaction.

 Executing multiple transactions concurrently improves the system
performance.

 Concurrency control increases the throughput and reduces waiting
time of transactions.

 If Concurrency Control is not done, then it may leads to problems like
lost updates, dirty read, non-repeatable read, phantom read etc. (Refer
section 7 for more details)

 Lost Updates: It occur when two transactions update same data item at
the same time. In this the first write is lost and only the second write is
visible.

Concurrency control Protocols:
 The concurrency can be controlled with the help of the following Protocols
(1) Lock-Based Protocol
(2) Timestamp-Based Protocol
(3) Validation-Based Protocol
1. LOCK-BASED PROTOCOL

 Lock assures that one transaction should not retrieve or update a record
which another transaction is updating.

 For example, traffic at junction, there are signals which indicate stop and
go. When one side signal is green (vehicles allowed passing), then other
side signals are red (locked. Vehicles not allowed passing). Similarly, in
database transaction when one transaction operations are under
execution, the other transactions are locked.

 If at a junction, green signal is given to more than one side, then there may
be chances of accidents. Similarly, in database transactions, if the locking
is not done properly, then it will display the inconsistent and corrupt
data.

There are two lock modes: (1). Shared Lock (2). Exclusive Lock
 Shared Locks are represented by S. If a transaction Ti apply

shared lock on data item A, then Ti can only read A but not write
into A. Shared lock is requested using lock-S instruction.

 Exclusive Locks are represented by X. If a transaction Ti apply
exclusive lock on data item A, then Ti can read as well as write
data item A. Exclusive lock is requested using lock-X instruction.

There are four types of lock protocols available. They are:
(1) Simplistic lock protocol
 It is the simplest locking protocol. It considers each read/write

operation of a transaction as individual.
 It allows transactions to perform write/read operation on a data item

only after obtaining a lock on that data item.
 Transactions unlock the data item immediately after completing the

write/read operation.
 When a transaction needs to perform many read and write operations,

for each operation lock is applied before performing it and release the
lock immediately after completion of the operation.

(2) Pre-claiming Lock Protocol
 In pre-claiming Lock Protocol, for each transaction a list is prepared

consisting of the data items and type of lock required on each of the
data item.

 Before initiating an execution of the transaction, it requests DBMS to
issue all the required locks as per the list.

 If all the locks are granted then this protocol allows the transaction to
begin. When the transaction is completed then it releases all the lock.

 If all the locks are not granted then this protocol allows the transaction
to rolls back and waits until all the locks are granted.

(3) Two-phase locking (2PL) protocol
 Every transaction execution starts by acquiring few locks or zero locks.

During execution it acquire all other required locks one after the other.
 When a transaction releases any of the acquired locks then it cannot

acquire any more new locks. But, it can only release the acquired locks one
after the other during remaining execution of that transaction.

The Two Phase Locking (2PL) has two phases. They are:
Growing phase: In the growing phase, a new lock on the data item may be acquired
by the transaction, but none can be released. (Only get new locks but no release of
locks).
Shrinking phase: In the shrinking phase, existing lock held by the transaction may be
released, but no new locks can be acquired. (Only release locks but no more getting
new locks).

(4) Strict Two-phase locking (Strict-2PL) protocol
The first phase of Strict-2PL is similar to 2PL. In the first phase,

after acquiring all the locks, the transaction continues to execute
normally.

 The only difference between 2PL and strict 2PL is that Strict-2PL
does not release a lock after using it.

 Strict-2PL waits until the whole transaction to commit, and then it
releases all the locks at a time.

 Strict-2PL protocol does not have shrinking phase of lock release.

 Strict-2PL does not have cascading abort as 2PL does

TIMESTAMP BASED PROTOCOL
 A timestamp is issued to each transaction when it enters into the system. It

uses either system time or logical counter as a timestamp. It is most commonly
used concurrency protocol.

 The timestamp of transaction T is denoted as TS(T).
 The system order the transactions based on their arrival time. For example, let the

arrival times of transactions T1, T2 and T3 be 9:00AM, 9:01AM and 9:02AM
respectively. Then TS(T1) < TS(T2) < TS(T3). (9:00AM < 9:01AM < 9:02AM)

 By using timestamp, the system prepares the serializability order. i.e.,
T1→T2→T3

 The read timestamp of data item X is denoted by R–timestamp(X).
 R–timestamp(X): It is the time stamp of the youngest transaction that performed

read operation on X.

 The write timestamp of data item X is denoted by W–timestamp(X).
W–timestamp(X): It is the time stamp of the youngest transaction

that performed write operation on X.

 There are mainly two Timestamp Ordering Algorithms in DBMS.
They are:

 Basic Timestamp Ordering
 Thomas Write rule

(1). Basic Timestamp Ordering
 Check the following condition whenever a transaction Ti issues a

Read (X) operation:
 If W_ timestamp(X) >TS(Ti) then the operation is rejected.
 If W_ timestamp(X) <= TS(Ti) then the operation is executed.
(Read is not allowed by Ti, if any younger transactions than Ti write
X)
 Check the following condition whenever a transaction Ti issues a

Write(X) operation:
 If TS(Ti) < R_ timestamp(X) then the operation is rejected. (Write

is not allowed by Ti, if any younger transactions than Ti read X)
 If TS(Ti) < W_ timestamp(X) then the operation is rejected and Ti

is rolled back otherwise the operation is executed.
(Write is not allowed by Ti, if any younger transactions than Ti write
X and also Ti should be rolled back and restarted later)

(2) Thomas's Write Rule
Thomas Write Rule is a timestamp-based concurrency control protocol which ignores
outdated writes. It follows the following steps:

(ii). If W_TS(X) > TS(Ta), then don’t execute the Write Operation of Ta but continue Ta
processing. This is a case of Outdated or Obsolete Writes.

(iii). If the condition in (i) or (ii) is not satisfied, then execute Write(X) of Ta and set
W_TS(X) to TS(Ta).
Outdated writes are rejected but the transaction is continued in Thomas Write Rule but in
Basic TO protocol will reject write operation and terminate such a Transaction.

VALIDATION BASED PROTOCOL
 In this technique, no concurrency control checking is done while the

transaction is under execution. After transaction execution is
completed, then only whether concurrency violated or not is
checked. It is based on timestamp based protocol. Validation Based
Protocol has three phases:

1. Read phase: In this phase, the transaction Ta read the value of
various data items that are required by Ta and stores them in temporary
local variables. It can perform all the write operations on temporary
variables without an update to the actual database.
2. Validation phase: After Transaction Ta execution completed, Ta
perform a validation test to determine whether it can copy the
temporary local variable values to actual database without causing a
violation of serializability.
3. Write phase: If the validation of the transaction is successful (valid),
then the temporary results are written to the database. Otherwise the
temporary local variable values of Ta is ignored and Ta is rolled back.

 To perform the validation test, we need to know when the various
phases of transaction Ta took place. We shall therefore associate
three different timestamps with transaction Ta.

(i). Start (Ta): the time when Ta, started its execution.

(ii). Validation (Ta): the time when Ta finished its execution and
started its validation phase.

(iii). Finish (Ta): the time when Ta finished its write phase.
 The serializability order is determined by changing the

timestamp of T as TS(T) = Validation(T).
 Hence the serializability is determined at the validation process

and cannot be decided in advance. Therefore it ensures greater
degree of concurrency while executing the transactions

MULTIPLE GRANULARITY
The size of data items is often called the data item granularity. There exist multiple
granularity levels in the DBMS. They are:
 Database
 Table
 Record / row
 Cell / field value

 A database contains multiple tables. Each table contains multiple records. Each
record contains multiple field values. It is shown in the above figure.

 For example, consider Table D and Record R2. These two are not mutually
exclusive. R2 is a part of D.

 So granularity means different levels of data where as smaller
levels are nested inside the higher levels.

 Inside database we have tables. Inside table we have records. Inside
record we have field values. This can be represented with a tree as
shown below.

A lock can be applied at a node, if and only if there does not exist any
locks on the decedents (childs and grand childs) of that node. Otherwise
lock cannot be applied.

 If lock is applied on table A, it implies that the lack is also applicable to
sub-tree from node A.

 If lock is applied on database (at root node), it implies the lack is also
applicable to all the nodes in the tree.

 Locking at higher levels needs lock details at lower levels. This
information is provided by additional types of locks called
intention locks.

 The idea behind intention locks is for a transaction to indicate,
along the path from the root to the desired node, what type of lock
(shared or exclusive) it will require from one of the node’s
descendants.

 There are three types of intention locks:
(1) Intention-shared (IS): It indicates that one or more shared locks
will be requested on some descendant node(s).
(2) Intention-exclusive (IX): It indicates that one or more exclusive
locks will be requested on some descendant node(s).
(3) Shared-intention-exclusive (SIX): It indicates that the current
node is locked in shared mode but that one or more exclusive locks
will be requested on some descendant node(s).

RECOVERY AND ATOMICITY
Database needs to be recovered, when the following failures occur.
(1) Transaction failure
(2) System crash
(3) Disk failure
 Transaction failure: During transaction execution, if it cannot proceed

further, then it needs to abort. This is known as transaction failure. A
single transaction failure may influence many transactions or processes.
The reasons for transaction failure are:

 Logical errors: It occurs due to some code error or an internal condition
error.

 System error: It occurs when the DBMS itself terminates an active
transaction due to deadlock or resource unavailability.

 System crash: The system may crash due to the external factors such as
interruptions in power supply, hardware or software failure. Example:
Operating System errors.

 Disk failure: Disk failure occurs due to the formation of bad sectors,
disk head crash, un-reachable to the disk or any other failure which
destroys all or part of disk storage.

When a system crashes, it may have many transactions being executed
and many files may be opened for them. When a DBMS recovers from
a crash, it must maintain the following:
It must check the states of all the transactions that were being

executed.
Few transactions may be within the middle of some operation; the

DBMS should make sure the atomicity of the transaction during this
case.

It must check for each transaction whether its execution accepted or
to be rolled back.

No transaction is allowed to be in an inconsistent state.
The following techniques facilitate a DBMS in recovering as well as
maintaining the atomicity of a transaction:
 Log based recovery
 Check point
 Shadow paging

LOG BASED RECOVERY
 The log file contains information about the start and end of each

transaction and any updates done by the transaction on database
items.

 The log file is saved onto some stable storage so that if any failure
occurs, then it can be used to recover the database. The results of
all the operation of transaction are first saved in the log and latter
updated on the database. The log information is used to recover
from system failures.

The log is a sequence of records. It contains the following entries.
 When a transaction Ti starts execution, the log stores: < Ti, Start >
 When a transaction Ti modifies an item X from old value V1 to

new value V2 , the log stores: < Ti , X, V1, V2>
 When the transaction Ti execution completed, the log stores: < Ti,

commit>
 When the transaction Ti execution aborted, the log stores: < Ti,

abort>

Recovery using Log records
When the system is crashed, then the DBMS checks the log to find

which transactions needs to be undo and which need to be redo.
There are two major techniques for recovery from non-catastrophic
transaction failures.

i. Deferred database modification: In this technique, all the changes done
by the transaction are saved in the system log without modifying the actual
database. Once the transaction committed, then only the changes are
updated in the database. If a transaction fails before reaching its commit
point, it has not changed the database in any way so UNDO is not needed. It
may be necessary to REDO the effect of the operations that are recorded in
the system log, because their effect not yet written in the database.
ii. Immediate database modification: In this technique, the database is
modified immediately after every operation. However, these operations are
recorded in the log file before they are applied to the database, making
recovery still possible. If a transaction fails to reach its commit point, the
effect of its operation must be undone i.e. the transaction must be rolled
back hence we require both undo and redo.

CHECKPOINT – (Recovery with Concurrent Transactions)
 In order to recover database from system crashes, all the

transaction operations are first saved in the log file and latter
updated on the database. The log file is saved in remote location
so that it can be used to recover the database. As time passes, the
entries in the log file may grow too big. At the time of recovery,
searching the entire log file is very time consuming and an
inefficient method.

 To ease this situation, the concept of 'checkpoint' is introduced.
 Checkpoint is a mechanism where all the previous log entries are

removed from the log file and their results are updated in the
database. The checkpoint is like a bookmark.

 During the execution of the transactions, after executing few
operations, a check point is created and saved in the log file. Now
the log file contains only entries after checkpoint related to new
step of transaction till next checkpoint and so on.

 The checkpoint is used to declare a point before which the DBMS
was in the consistent state, and all transactions were committed.

Recovery using Checkpoint
As shown below, a recovery system recovers the database from this failure:

 The recovery system reads the logs backwards from the end to the last checkpoint.
 It maintains two lists, an undo-list and a redo-list.
 If the recovery system sees a log with <Ti, Start> and < Ti, Commit> or just < Ti,

Commit>, it puts the transaction Ti in the redo-list.
For example: In the log file, transaction T1 have only < Ti, commit> and the
transactions T2 and T3 have < Ti, Start> and < Ti, Commit>. Therefore T1, T2 and T3
transaction are added to the redo list.
 If the recovery system finds a log with < Ti, Start> but no commit or abort, then it

puts the transaction Ti in undo-list.
For example: Transaction T4 will have < Ti, Start>. So T4 will be put into undo list
since this transaction is not yet complete and failed in the middle.
 All the transactions in the undo-list are then undone and their logs are removed.
 All the transactions in the redo-list and their previous logs are removed and then

redone before saving their logs.

ARIES ALGORITHM (Algorithm for Recovery and Isolation
Exploiting Semantics)
 ARIES is one of the log based recovery method. It uses the Write

Ahead Log (WAL) protocol.
 Write-ahead logging (WAL): is a family of techniques for

providing atomicity and durability (two of the ACID properties) in
database systems.

 The change done by the transactions are first recorded in the log file
and written to stable storage at remote location, before the changes
are written to the database.

The recovery process of ARIES algorithm has 3 phases. They are:
(1) Analysis phase (2) Redo Phase (3) Undo Phase

(1) Analysis phase: The recovery subsystem scans the log file
forward from the last checkpoint up to the end. The purpose of the
scan is to obtain information about the following:
 The starting point from where the redo pass should start.
 The list of transactions to be rolled back in the undo pass.
 The list of dirty pages.
(2) Redo: In this phase, the log file is read forward starting from
smallest LSN of a dirty page to the end and each update found in the
log file is redone. The purpose of this redo pass is to repeat the history
to reconstruct the database to the state present at the time of system
failure.
(3) Undo: The log is scanned backward and updates related to loser
transactions are undone. The ‘loser transaction’ updates are rolled
back in reverse chronological order. If any of the aborted transaction
operations are undone, then skip them, no need to undo once again.

 Shadow Paging is recovery technique that is used to
recover database.

 In this recovery technique, database is considered as made up of
fixed size of logical units of storage which are referred
as pages. pages are mapped into physical blocks of storage, with
help of the page table which allow one entry for each logical page
of database.

 This method uses two page tables named current page
table and shadow page table. The entries which are present in
current page table are used to point to most recent database pages
on disk. Another table i.e., Shadow page table is used when the
transaction starts which is copying current page table. After this,
shadow page table gets saved on disk and current page table is
going to be used for transaction. Entries present in current page
table may be changed during execution but in shadow page table it
never get changed. After transaction, both tables become identical.
This technique is also known as Cut-of-Place updating.

DATABASE BACKUP
 The process of creating duplicate copy of database is called database

backup. Backup helps to recover against failure of media, hardware or
software failures or any other kind of failures that cause a serious data
crash.

 Database copy is created and stored in the remote area with the help of
network. This database is periodically updated with the current database
so that it will be in sync with data and other details. This remote database
can be updated manually called offline backup. It can be backed up online
where the data is updated at current and remote database simultaneously.
In this case, as soon as there is a failure of current database, system
automatically switches to the remote database and starts functioning. The
user will not know that there was a failure.

Some of the backup techniques are as follows:
 Full backup or Normal backup: Full backup is also known as

Normal backup. In this, an exact duplicate copy of the original
database is created and stored every time the backup made. The
advantage of this type of backup is that restoring the lost data is
very fast as compared to other. The disadvantage of this method is
that it takes more time to backup.

 Incremental Backup: Instead of backup entire database every
time, backup only the files that have been updated since the last
full backup. For this at least weekly once normal backup has to be
done. While incremental database backups do run faster, the
recovery process is a bit more complicated.

 Differential backup: Differential is similar to incremental
backup but the difference is that the recovery process is simplified
by not clear the archive bit. So a file that is updated after a normal
backup will be archived every time a differential backup is run
until the next normal backup runs and clears the archive bit.

