
Unit-3

Cryptographic Hash Functions,

Message Authentication Codes

&

Key Management and Distribution

By Dr Ravindra Babu Kallam

• Cryptographic Hash Functions:
– Message Authentication
– Secure Hash Algorithm (SHA-512)

• Message authentication codes:
– Authentication requirements,
– HMAC,
– CMAC,
– Digital signatures,
– Elgamal Digital Signature Scheme.

• Key Management and Distribution:
– Symmetric Key Distribution Using Symmetric &

Asymmetric Encryption,
– Distribution of Public Keys,
– Kerberos, X.509 Authentication Service,
– Public – Key Infrastructure

Approaches to message
authentication:

• A message ,file, document or other
collection of data is said to be authentic
when it is genuine and came from its
original source.

• Message authentication is a procedure
that allows communicating parties to
verify that the received messages are
authentic.

Message authentication requirements
In the context of communications across a network, the following attacks can

be identified.

1. Disclosure: Release of message contents to any person or process not

possessing the appropriate cryptographic key.

2. Traffic analysis: Discovery of the pattern of traffic between parties. In a

connection-oriented application, the frequency and duration of connections

could be determined.

In either a connection-oriented or connectionless

environment, the number and length of messages between parties could be

determined.

3. Masquerade: Insertion of messages into the network from a fraudulent

source.

4. Content modification: Changes to the contents of a message, including

insertion, deletion, transposition, and modification.

5. Sequence modification: Any modification to a sequence of messages between

parties, including insertion, deletion, and reordering.

6.Timing modification: Delay or replay of messages.

7. Source repudiation: Denial of transmission of message by source.

8. Destination repudiation: Denial of receipt of message by destination.

 Measures to deal with the first two attacks are in the realm of message
confidentiality.

 Measures to deal with items 3 through 6 are generally regarded as message
authentication.

 Mechanisms for dealing with item 7 come under the heading of digital
signatures.

 Dealing with item 8 may require a combination of the use of digital signatures
and a protocol designed to counter this attack.

• Authentication using conventional Encryption:

– It is possible to perform authentication simply by using
conventional encryption, if we assume that the key is
secured between sender and receiver.

• Message Authentication without Message Encryption:

– There are several approaches to message authentication that
do not rely on encryption.

– It is specially used where only authentication is required but
not the confidentiality, few of such situations are:
• When same message is broadcasted to number of destinations

• An exchange in which one side has a heavy load and cannot afford
the time to decrypt all incoming messages. Authentication is carried
out on a selective basis, messages are chosen at random for
checking.

• Authentication of a computer program in plain text is an attractive
service. The computer program can be executed with out having to
decrypt it every time.

Message Authentication Code:

• Authentication technique involves the use of a secret key to
generate a small block of data, known as a message
authentication code, that is appended to the message.

• This technique assumes that two communicating parties, say A
and B, share a common secrete key KAB.

• When A has a message to send to B, it calculates the message
authentication code as a function of the message and the key:
MACM = F(KAB,M).

• The message plus code are transmitted to the intended recipient.

• The recipient performs the same calculation on the received
message, using the same secret key, to generate a new MAC.

• The received MAC is compared with the new MAC as shown in
the fig. if both are same then the message is authenticated.

Message authentication using MAC

One way Hash Function:

• A hash function accepts a variable size message M as input and
produces a fixed- size message digest H(M) as output. Unlike
MAC ,a hash function does not take the secret key as input.

• To authenticate a message, the message digest is sent with the
message in such a way that the message digest is authentic.

• As shown in the fig there are three ways in which the message can
be authenticated.
– Using Conventional encryption

– Using public key encryption

– Using secrete value. Several reasons for using this technique are:

• Encryption software is quit slow.

• Encryption hardware cost are non negligible

• Encryption hardware is optimized toward large data size

• Encryption algorithms may be covered by patents

• Encryption algorithms may be subject to export control.

Message authentication using One-way Hash Function

Secure Hash Function and HMAC
• One way hash function or secure hash function, is

important not only in message authentication but in
digital signatures.

• Hash Function Requirements:

– H can be applied to a block of data of any size

– H produces a fixed length output

– H(x) is relatively easy to compute for any given x, making both
hardware and software implementation practical.

– For any given code h, it is computationally infeasible to find x
such that H(x) = h

– For any given block x, it is computationally infeasible to find
y=x with H(y) = H(x).

Simple Hash Functions:

• Simplest hash function is the bit-by-bit
exclusive – OR (XOR) of every block.

• This can be expressed as follows:

– Ci = bi1 bi2 - - - - - bim

– Where

• Ci = ith bit of the hash code, 1<=i<=n

• m = number of n-bit blocks in the input

• bij = ith bit in jth block

• = XOR operation

Simple Hash Function Using Bitwise XOR

Applications of cryptographic Has Functions

Message Authentication: Message authentication is a
mechanism or service used to verify the integrity of a
message.

Digital Signature: The operation of the digital signature
is similar to that of the MAC. In the case of the digital
signature, the hash value of a message is encrypted
with a user’s private key. Anyone who knows the user’s
public key can verify the integrity of the message that
is associated with the digital signature.

Use of Hash function for Message Authentication

a) Message plus concatenated hash code is
encrypted using symmetric encryption.

b) Only the hash code is encrypted, using
symmetric encryption

c) Use a hash function with some secret value (s)
but no encryption for massage authentication

d) Confidentiality can be added to the approach of
method (c) by encrypting the entire message
plus the hash code

Use of hash function for Digital signatures

a) Using public key cryptography, Encrypt the
hash code with senders private key to achieve
digital signature.

b) If the confidentiality as well as digital
signature is desired, then the message plus
the private key encrypted hash code can be
encrypted using a symmetric key as shown in
the figure.

Secure Hash Algorithm
• SHA originally designed by NIST & NSA in 1993

• was revised in 1995 as SHA-1

• based on design of MD4 with key differences

• produces 160-bit hash values

Revised Secure Hash Standard:
• NIST issued revision in 2002
• added 3 additional versions of SHA

– SHA-256, SHA-384, SHA-512
• designed for compatibility with increased security provided

by the AES cipher
• structure & detail are similar to SHA-1
• hence analysis should be similar
• but security levels are rather higher

Comparison of SHA parameters
SHA-1 SHA-256 SHA-384 SHA-512

Message digest size 160 256 384 512

Message size <264 <264 <2128 <2128

Block size 512 512 1024 1024

Word size 32 32 64 64

Number of steps/ rounds 80 64 80 80

Step1: Append padding bits. The message is padded so that its
length in bits is 896 modulo 1024. That is, the length of the
padding message is 128 bits less then an integer multiple of 1024
bits.

The padding consists of a single 1 bit followed by the necessary
number of 0 bits.

Step2: Append length. A 128 bit representation of the length in bits
of the original message is appended to the result of step1.

The out come of the first two steps yields a message that is an
integer multiple of 1024 bits in length.

The expanded message is represented as a sequence of 1024-bit
blocks M1 , M2, ….. MN, so that the total length of the expanded
message is N x 1024 bits.

Step3: Initialize MD buffer.
A 512 bit buffer is used to hold intermediate and final results of the hash function.
The buffer can be represented as a eight 64-bit registers (a,b,c,d,e,f,g,h).
The registers are initialized to the following 64-bit integers (Hex Values)

a = 6A09E667F3BCC908 e = 510E527FADE682D1
b = BB67AE8584CAA73B f = 9B05688C2B3E6C1F
c = 3C6EF372FE94F82B g = 1F83D9ABFB41BD6B
d = A54FF53A5F1D36F1 h = 5BE0CDI9137E2179

These values are stored in Big - endian format, which is the most significant byte of a
word in the low address byte position.

The initialization values appear as follows:
a = 6A09E667F3BCC908 e = 510E527FADE682D1
b = BB67AE8584CAA73B f = 9B05688C2B3E6C1F
c = 3C6EF372FE94F82B g = 1F83D9ABFB41BD6B
d = A54FF53A5F1D36F1 h = 5BE0CDI9137E2179

Note: these words are obtained by taking the first 64 bits of the fractional parts of the
square roots of the first 8 prime numbers.

Step4: Process message in 1024-bit (128 word) blocks.
The heart of the algorithm is a module that consists of
80 rounds.
Each round takes as input the 512 bit buffer value
a,b,c,d,e,f,g and h, and updates the contents of the
buffer.
At input to the first round, the buffer has a value of the
intermediate hash value, Hi-1. Each round t makes use of
a 64 bit value Wt, derived from the current 1024 bit
block being processed (Mi).

Each round also makes use of an additive constant Kt,
where 0<=t<=79 indicates one of the 80 rounds.

The output of the 80th round is added to the
input to the first round (Hi-1) to produce (Hi) .

The addition is done independently for each of
the eight words in the buffer with each of the
corresponding words in Hi-1.

Step5: Output.

• After all N 1024-bit blocks have been
processed, the output from the Nth the stage is
the 512-bit message digest.

.

SHA-512 Processing of a Single 1024 bit Block

T1T2

Let us look in more detail at the logic in each of the 80 steps of the processing of
one 512-bit block (Figure 11.11). Each round is defined by the following set of
equations:

where :
t = step number; 0 … t … 79
Ch(e, f, g) = (e AND f) ⊕ (NOT e AND g) the conditional function:
If e then f else g

Maj(a, b, c) = (a AND b) ⊕ (a AND c) ⊕ (b AND c)
the function is true only of the majority (two or three) of the arguments are true

W t = a 64-bit word derived from the current 1024-bit input block
Kt = a 64-bit additive constant
+ = addition modulo 264 .
Two observations can be made about the round function.

1. Six of the eight words of the output of the round function involve simply
permutation (b, c, d, f, g, h) by means of rotation. This is indicated by shading in
Figure 11.11.

2. Only two of the output words (a, e) are generated by substitution.

Creation of 80- word input sequence for SHA 512 processing of

single block

HMAC:
HMAC design objectives:
• To use with out modifications, available hash functions

such as MD5 and SHA -1.
• In particular, to use hash functions that perform well in

software and for which code is freely and widely
available.

• To allow for easy replaceability of the embedded hash
function in case faster or more secure hash functions are
found or required.

• To preserve the original performance of the hash
function with out incurring a significant degradation.

• To use and handle keys in a simple way.
• Easier for cryptanalysis.

HMAC Algorithm:
• Fig., below shows the overall operation of HMAC.

• In this:

H = embedded hash function (e.g., SHA -1)

IV = initial value input to hash function

M = message input to HMAC

Yi = i th block of M, 0<= i <= (L-1)

L = number of blocks in M

b = number of bits in a block

n = length of hash code produced by embedded hash function

K = secrete key recommended length is >=n;

K+ = K padded with zeros on the left so that the result is b- bits in length

ipad = 00110110 (36 in hex) repeated b/8 times.

opad= 01011100 (5C in hex) repeated b/8 times.

Then HMAC can be expressed as :

HMAC (K,M) = H[(K+ XOR opad) II H[(K+ XOR ipad) II M]]

• Steps in words:

1. Append zeros to the left end of K to create a b bit
string K+

2. XOR K+ with ipad to produce the b –bit block Si

3. Append M to Si

4. Apply H to the stream generated in step3

5. XOR K+ with opad to produce the b –bit block S0

6. Append the hash result from step 4 to S0

7. Apply H to the stream generated in step 6 and
output the result.

HMAC Overview

Efficient Implementation of HMAC

Cipher based MAC (CMAC)
• CMAC is widely used in government and industry.
• It has the message size limitation
• Cipher based MACs are block cipher based message

authentication codes.
• In CMAC, the message size is an integer multiple ‘n’ of

cipher block length ‘b’. For AES, b=128 and for triple DES,
b=64. The msg is divided into ‘n’ blocks, M1,M2,….Mn.

• It uses ‘k’ bit encryption key K and an n-bit constant K1.
• CBC encrypt the Msg and retain the result of the last block

encryption as the computed MAC value.
• If the msg is not in integer multiple of the cipher block,

then the final block is padded to the right with a 1 and as
many 0s as necessary., so that the final block is also of
length ‘b’.

• C1= E(K,M1)
• C2= E(K,[M2XOR C1)
• C3= E(K,[M3XOR C2)
•

•

• Cn= E(K,[MNXOR Cn-1 XOR K1)
• T= MSBTlen(Cn)
• Where T=message authentication code, also referred

to as the tag.
• Tlen= bit length of T
• MSBS(X)= the s leftmost bits of the bit string X.

Cipher based MAC (CMAC)

Digital Signature:

 A digital signature is an authentication
mechanism that enables the creator of a
message to attach a code that acts as a
signature.

 This is possible by encrypting the message
with the creator’s private key.

The signature guaranties the source and
integrity of the message.

Disputes in simple message authentication:
• B can forge a different message and clime that it came from A
• A can deny sending the message. Because it is possible for B

to forge A’s message, there is no way to prove that A have not
sent it.

• hence include authentication function with additional
capabilities

Properties:
• verify author, date & time of signature

• It must to authenticate the contents at the time of the signature

• It must be verifiable by third parties, to resolve disputes

Digital Signature:

Requirements:

• Signature must depend on the message being signed

• Signature must use some information unique to
sender
– to prevent both forgery and denial

• It must be relatively easy to produce

• It must be relatively easy to recognize & verify

• It must be computationally infeasible to forge
– with new message for existing digital signature

– with fraudulent digital signature for given message

• It must be practical to retain a copy of the digital signature in
storage

Digital Signature:

Digital signatures fall in two categories:
• Direct digital signatures
• Arbitrated digital signatures.
Direct Digital Signatures:
• involve only sender & receiver
• assumed receiver has sender’s public-key
• digital signature made by sender signing entire message or

hash with private-key
• can encrypt using receivers public-key for confidentiality
• important that sign first then encrypt message & signature

Digital Signature:

Arbitrated Digital Signatures

• involves use of arbiter A
– validates any signed message

– then dated and sent to recipient

• requires suitable level of trust in arbiter

• can be implemented with either private or
public-key algorithms

• arbiter may or may not see message

Elgamal Digital Signature Scheme

