
RC4 
RC4 is a stream cipher designed in 1987 by Ron Rivest for RSA Security. It is a variable key size 
stream cipher with byte-oriented operations. The algorithm is based on the use of a random 
permutation. Eight to sixteen machine operations are required per output byte, and the 
cipher can be expected to run very quickly in software. RC4 is used in the Secure Sockets 
Layer/Transport Layer Security (SSL/TLS) standards that have been defined for 
communication between Web browsers and servers. 
 

• A variable length key of from 1 to 256 bytes (8 to 2048 bits) is used to initialize a 256-byte 
state vector S, with elements S[0], S[1], …., S[255]. 

• S contains a permutation of all 8-bit numbers from 0 through 255. 
 
Initialization of S 
S[0] = 0, S[1] = 1, …………., S[255] = 255 . 
 
/* Initialization */ 
for i = 0 to 255 do 
S[i] = i; 
T[i] = K[i mod keylen]; 
 
If the length of the key K is 256 bytes, then K is transferred to T. Otherwise, for a key of length 
keylen bytes, the first keylen elements of T are copied from K, and then K is repeated as many 
times as necessary to fill out T. 
 
Next we use T to produce the initial permutation of S. This involves starting with S[0] and 
going through to S[255], and for each S[i], swapping S[i] with another byte in S according to a 
scheme dictated by T[i]: 
 
/* Initial Permutation of S */ 
j = 0; 
for i = 0 to 255 do 

j = (j + S[i] + T[i]) mod 256; 
Swap (S[i], S[j]); 
 
Stream Generation: Pseudo-random generation algorithm (PRGA) Scrambling 
The output byte is selected by looking up the values of S[i] and S[j] adding them in modulo 
256, sum is used as index. S[S[i]+S[j]%256] is used as byte of the key stream. 
 

• Increments i 

• Looks up ith element of S, S[i] and adds to j 

• Exchange S[i] and S[j], then uses S[S[i]+S[j]%256] for key stream byte 

• Bitwise XOR with next byte of message to generate cipher byte. 
 
 
 



/* Stream Generation */ 
i, j = 0; 
while (true) 

i = (i + 1) mod 256; 
j = (j + S[i]) mod 256; 

Swap (S[i], S[j]); 
t = (S[i] + S[j]) mod 256; 
k = S[t]; 

 


